231 research outputs found
Properties of the QCD thermal transition with Nf=2+1 flavors of Wilson quark
We study properties of the thermal transition in QCD, using anisotropic, fixed-scale lattice simulations with Nf=2+1 flavors of Wilson fermion. Observables are compared for two values of the pion mass, focusing on chiral properties. Results are presented for the Polyakov loop, various susceptibilities, the chiral condensate and its susceptibility, and the onset of parity doubling in the light and strange baryonic sector
Lattice QCD at nonzero temperature and density
Abstract We discuss some selected recent developments in the field of lattice QCD at nonzero temperature and density, describing in particular the transition from the hadronic gas to the quark-gluon plasma, as seen in simulations using Wilson fermions.</jats:p
Azimuthal Anisotropy of Photon and Charged Particle Emission in Pb+Pb Collisions at 158 A GeV/c
The azimuthal distributions of photons and charged particles with respect to
the event plane are investigated as a function of centrality in Pb + Pb
collisions at 158 A GeV/c in the WA98 experiment at the CERN SPS. The
anisotropy of the azimuthal distributions is characterized using a Fourier
analysis. For both the photon and charged particle distributions the first two
Fourier coefficients are observed to decrease with increasing centrality. The
observed anisotropies of the photon distributions compare well with the
expectations from the charged particle measurements for all centralities.Comment: 8 pages and 6 figures. The manuscript has undergone a major revision.
The unwanted correlations were enhanced in the random subdivision method used
in the earlier version. The present version uses the more established method
of division into subevents separated in rapidity to minimise short range
correlations. The observed results for charged particles are in agreement
with results from the other experiments. The observed anisotropy in photons
is explained using flow results of pions and the correlations arising due to
the decay of the neutral pion
Multiplicity Distributions and Charged-neutral Fluctuations
Results from the multiplicity distributions of inclusive photons and charged
particles, scaling of particle multiplicities, event-by-event multiplicity
fluctuations, and charged-neutral fluctuations in 158 GeV Pb+Pb
collisions are presented and discussed. A scaling of charged particle
multiplicity as and photons as have been observed, indicating violation of naive wounded nucleon model.
The analysis of localized charged-neutral fluctuation indicates a
model-independent demonstration of non-statistical fluctuations in both charged
particles and photons in limited azimuthal regions. However, no correlated
charged-neutral fluctuations are observed.Comment: Talk given at the International Symposium on Nuclear Physics
(ISNP-2000), Mumbai, India, 18-22 Dec 2000, Proceedings to be published in
Pramana, Journal of Physic
Altering APP Proteolysis: Increasing sAPPalpha Production by Targeting Dimerization of the APP Ectodomain
One of the events associated with Alzheimer's disease is the dysregulation of α- versus β-cleavage of the amyloid precursor protein (APP). The product of α-cleavage (sAPPα) has neuroprotective properties, while Aβ1-42 peptide, a product of β-cleavage, is neurotoxic. Dimerization of APP has been shown to influence the relative rate of α- and β- cleavage of APP. Thus finding compounds that interfere with dimerization of the APP ectodomain and increase the α-cleavage of APP could lead to the development of new therapies for Alzheimer's disease. Examining the intrinsic fluorescence of a fragment of the ectodomain of APP, which dimerizes through the E2 and Aβ-cognate domains, revealed significant changes in the fluorescence of the fragment upon binding of Aβ oligomers—which bind to dimers of the ectodomain— and Aβ fragments—which destabilize dimers of the ectodomain. This technique was extended to show that RERMS-containing peptides (APP695 328–332), disulfiram, and sulfiram also inhibit dimerization of the ectodomain fragment. This activity was confirmed with small angle x-ray scattering. Analysis of the activity of disulfiram and sulfiram in an AlphaLISA assay indicated that both compounds significantly enhance the production of sAPPα by 7W-CHO and B103 neuroblastoma cells. These observations demonstrate that there is a class of compounds that modulates the conformation of the APP ectodomain and influences the ratio of α- to β-cleavage of APP. These compounds provide a rationale for the development of a new class of therapeutics for Alzheimer's disease
Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV
The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Cooling quasiparticles in A(3)C(60) fullerides by excitonic mid-infrared absorption
Long after its discovery, superconductivity in alkali fullerides A(3)C(60) still challenges conventional wisdom. The freshest inroad in such ever-surprising physics is the behaviour under intense infrared excitation. Signatures attributable to a transient superconducting state extending up to temperatures ten times higher than the equilibrium T-c similar to 20 K have been discovered in K3C60 after ultra-short pulsed infrared irradiation-an effect which still appears as remarkable as mysterious. Motivated by the observation that the phenomenon is observed in a broad pumping frequency range that coincides with the mid-infrared electronic absorption peak still of unclear origin, rather than to transverse optical phonons as has been proposed, we advance here a radically new mechanism. First, we argue that this broad absorption peak represents a 'super-exciton' involving the promotion of one electron from the t(1u) half-filled state to a higher-energy empty t(1g) state, dramatically lowered in energy by the large dipole-dipole interaction acting in conjunction with the Jahn-Teller effect within the enormously degenerate manifold of (t(1u))(2)(t(1g))(1) states. Both long-lived and entropy-rich because they are triplets, the infrared-induced excitons act as a sort of cooling mechanism that permits transient superconductive signals to persist up to much higher temperatures
The Collagen Chaperone HSP47 Is a New Interactor of APP that Affects the Levels of Extracellular Beta-Amyloid Peptides
Alzheimer disease (AD) is a neurodegenerative disorder characterized by progressive decline of cognitive function that represents one of the most dramatic medical challenges for the aging population. Aβ peptides, generated by processing of the Amyloid Precursor Protein (APP), are thought to play a central role in the pathogenesis of AD. However, the network of physical and functional interactions that may affect their production and deposition is still poorly understood. The use of a bioinformatic approach based on human/mouse conserved coexpression allowed us to identify a group of genes that display an expression profile strongly correlated with APP. Among the most prominent candidates, we investigated whether the collagen chaperone HSP47 could be functionally correlated with APP. We found that HSP47 accumulates in amyloid deposits of two different mouse models and of some AD patients, is capable to physically interact with APP and can be relocalized by APP overexpression. Notably, we found that it is possible to reduce the levels of secreted Aβ peptides by reducing the expression of HSP47 or by interfering with its activity via chemical inhibitors. Our data unveil HSP47 as a new functional interactor of APP and imply it as a potential target for preventing the formation and/or growth amyloid plaques
Modes of Aβ toxicity in Alzheimer’s disease
Alzheimer’s disease (AD) is reaching epidemic proportions, yet a cure is not yet available. While the genetic causes of the rare familial inherited forms of AD are understood, the causes of the sporadic forms of the disease are not. Histopathologically, these two forms of AD are indistinguishable: they are characterized by amyloid-β (Aβ) peptide-containing amyloid plaques and tau-containing neurofibrillary tangles. In this review we compare AD to frontotemporal dementia (FTD), a subset of which is characterized by tau deposition in the absence of overt plaques. A host of transgenic animal AD models have been established through the expression of human proteins with pathogenic mutations previously identified in familial AD and FTD. Determining how these mutant proteins cause disease in vivo should contribute to an understanding of the causes of the more frequent sporadic forms. We discuss the insight transgenic animal models have provided into Aβ and tau toxicity, also with regards to mitochondrial function and the crucial role tau plays in mediating Aβ toxicity. We also discuss the role of miRNAs in mediating the toxic effects of the Aβ peptide
- …