772 research outputs found
Nitrogen biogeochemistry in the Caribbean sponge Xestospongia muta: A source or sink of dissolved inorganic nitrogen?
published_or_final_versio
Evolution in the Cluster Early-type Galaxy Size-Surface Brightness Relation at z =~ 1
We investigate the evolution in the distribution of surface brightness, as a
function of size, for elliptical and S0 galaxies in the two clusters RDCS
J1252.9-2927, z=1.237 and RX J0152.7-1357, z=0.837. We use multi-color imaging
with the Advanced Camera for Surveys on the Hubble Space Telescope to determine
these sizes and surface brightnesses. Using three different estimates of the
surface brightnesses, we find that we reliably estimate the surface brightness
for the galaxies in our sample with a scatter of < 0.2 mag and with systematic
shifts of \lesssim 0.05 mag. We construct samples of galaxies with early-type
morphologies in both clusters. For each cluster, we use a magnitude limit in a
band which closely corresponds to the rest-frame B, to magnitude limit of M_B =
-18.8 at z=0, and select only those galaxies within the color-magnitude
sequence of the cluster or by using our spectroscopic redshifts. We measure
evolution in the rest-frame B surface brightness, and find -1.41 \+/- 0.14 mag
from the Coma cluster of galaxies for RDCS J1252.9-2927 and -0.90 \+/- 0.12 mag
of evolution for RX J0152.7-1357, or an average evolution of (-1.13 \+/- 0.15)
z mag. Our statistical errors are dominated by the observed scatter in the
size-surface brightness relation, sigma = 0.42 \+/- 0.05 mag for RX
J0152.7-1357 and sigma = 0.76 \+/- 0.10 mag for RDCS J1252.9-2927. We find no
statistically significant evolution in this scatter, though an increase in the
scatter could be expected. Overall, the pace of luminosity evolution we measure
agrees with that of the Fundamental Plane of early-type galaxies, implying that
the majority of massive early-type galaxies observed at z =~ 1 formed at high
redshifts.Comment: Accepted in ApJ, 16 pages in emulateapj format with 15 eps figures, 6
in colo
Climate change promotes parasitism in a coral symbiosis.
Coastal oceans are increasingly eutrophic, warm and acidic through the addition of anthropogenic nitrogen and carbon, respectively. Among the most sensitive taxa to these changes are scleractinian corals, which engineer the most biodiverse ecosystems on Earth. Corals' sensitivity is a consequence of their evolutionary investment in symbiosis with the dinoflagellate alga, Symbiodinium. Together, the coral holobiont has dominated oligotrophic tropical marine habitats. However, warming destabilizes this association and reduces coral fitness. It has been theorized that, when reefs become warm and eutrophic, mutualistic Symbiodinium sequester more resources for their own growth, thus parasitizing their hosts of nutrition. Here, we tested the hypothesis that sub-bleaching temperature and excess nitrogen promotes symbiont parasitism by measuring respiration (costs) and the assimilation and translocation of both carbon (energy) and nitrogen (growth; both benefits) within Orbicella faveolata hosting one of two Symbiodinium phylotypes using a dual stable isotope tracer incubation at ambient (26 °C) and sub-bleaching (31 °C) temperatures under elevated nitrate. Warming to 31 °C reduced holobiont net primary productivity (NPP) by 60% due to increased respiration which decreased host %carbon by 15% with no apparent cost to the symbiont. Concurrently, Symbiodinium carbon and nitrogen assimilation increased by 14 and 32%, respectively while increasing their mitotic index by 15%, whereas hosts did not gain a proportional increase in translocated photosynthates. We conclude that the disparity in benefits and costs to both partners is evidence of symbiont parasitism in the coral symbiosis and has major implications for the resilience of coral reefs under threat of global change
Recommended from our members
No straight lines – young women’s perceptions of their mental health and wellbeing during and after pregnancy: a systematic review and meta-ethnography
Background: Young mothers face mental health challenges during and after pregnancy including increased rates of depression compared to older mothers. While the prevention of teenage pregnancy in countries such as the United States and the United Kingdom has been a focus for policy and research in recent decades, the need to understand young women’s own experiences has been highlighted. The aim of this meta-ethnography was to examine young women’s perceptions of their mental health and wellbeing during and after pregnancy to provide new understandings of those experiences.
Methods: A systematic review and meta-ethnographic synthesis of qualitative research was conducted. Seven databases were systematically searched and forward and backward searching conducted. Papers were included if they were from Organisation for Economic Co-operation and Development countries and explored mental health and wellbeing experiences of young mothers (age under 20 in pregnancy; under 25 at time of research) as a primary research question – or where evidence about mental health and wellbeing from participants was foregrounded. Nineteen papers were identified and the Critical Appraisal Skills Programme checklist for qualitative research used to appraise the evidence. Following the seven-step process of meta-ethnography, key constructs were examined within each study and then translated into one another.
Results: Seven translated themes were identified forming a new line of argument wherein mental health and wellbeing was analysed as relating to individual bodily experiences; tied into past and present relationships; underpinned by economic insecurity and entangled with feelings of societal surveillance. There were ‘no straight lines’ in young women’s experiences, which were more complex than dominant narratives around overcoming adversity suggest.
Conclusions: The synthesis concludes that health and social care professionals need to reflect on the operation of power and stigma in young women’s lives and its impact on wellbeing. It adds to understanding of young women’s mental health and wellbeing during and after pregnancy as located in physical and structural factors rather than individual capacities alone
Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
The inclusive and dijet production cross-sections have been measured for jets
containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass
energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The
measurements use data corresponding to an integrated luminosity of 34 pb^-1.
The b-jets are identified using either a lifetime-based method, where secondary
decay vertices of b-hadrons in jets are reconstructed using information from
the tracking detectors, or a muon-based method where the presence of a muon is
used to identify semileptonic decays of b-hadrons inside jets. The inclusive
b-jet cross-section is measured as a function of transverse momentum in the
range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet
cross-section is measured as a function of the dijet invariant mass in the
range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets
and the angular variable chi in two dijet mass regions. The results are
compared with next-to-leading-order QCD predictions. Good agreement is observed
between the measured cross-sections and the predictions obtained using POWHEG +
Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet
cross-section. However, it does not reproduce the measured inclusive
cross-section well, particularly for central b-jets with large transverse
momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final
version published in European Physical Journal
Generic framework for meso-scale assessment of climate change hazards in coastal environments
The coral core microbiome identifies rare bacterial taxa as ubiquitous endosymbionts
© 2015 International Society for Microbial Ecology All rights reserved. Despite being one of the simplest metazoans, corals harbor some of the most highly diverse and abundant microbial communities. Differentiating core, symbiotic bacteria from this diverse hostassociated consortium is essential for characterizing the functional contributions of bacteria but has not been possible yet. Here we characterize the coral core microbiome and demonstrate clear phylogenetic and functional divisions between the micro-scale, niche habitats within the coral host. In doing so, we discover seven distinct bacterial phylotypes that are universal to the core microbiome of coral species, separated by thousands of kilometres of oceans. The two most abundant phylotypes are co-localized specifically with the corals' endosymbiotic algae and symbiont-containing host cells. These bacterial symbioses likely facilitate the success of the dinoflagellate endosymbiosis with corals in diverse environmental regimes
The “Flexi-Chamber”: A Novel Cost-Effective In Situ Respirometry Chamber for Coral Physiological Measurements
Coral reefs are threatened worldwide, with environmental stressors increasingly affecting the ability of reef-building corals to sustain growth from calcification (G), photosynthesis (P) and respiration (R). These processes support the foundation of coral reefs by directly influencing biogeochemical nutrient cycles and complex ecological interactions and therefore represent key knowledge required for effective reef management. However, metabolic rates are not trivial to quantify and typically rely on the use of cumbersome in situ respirometry chambers and/or the need to remove material and examine ex situ, thereby fundamentally limiting the scale, resolution and possibly the accuracy of the rate data. Here we describe a novel low-cost in situ respirometry bag that mitigates many constraints of traditional glass and plexi-glass incubation chambers. We subsequently demonstrate the effectiveness of our novel "Flexi-Chamber" approach via two case studies: 1) the Flexi-Chamber provides values of P, R and G for the reef-building coral Siderastrea cf. stellata collected from reefs close to Salvador, Brazil, which were statistically similar to values collected from a traditional glass respirometry vessel; and 2) wide-scale application of obtaining P, R and G rates for different species across different habitats to obtain inter- and intra-species differences. Our novel cost-effective design allows us to increase sampling scale of metabolic rate measurements in situ without the need for destructive sampling and thus significantly expands on existing research potential, not only for corals as we have demonstrated here, but also other important benthic groups
Pigmentation plasticity enhances crypsis in larval newts: Associated metabolic cost and background choice behaviour
In heterogeneous environments, the capacity for colour change can be a valuable adaptation enhancing crypsis against predators. Alternatively, organisms might achieve concealment by evolving preferences for backgrounds that match their visual traits, thus avoiding the costs of plasticity. Here we examined the degree of plasticity in pigmentation of newt larvae (Lissotriton boscai) in relation to predation risk. Furthermore, we tested for associated metabolic costs and pigmentation-dependent background choice behaviour. Newt larvae expressed substantial changes in pigmentation so that light, high-reflecting environment induced depigmentation whereas dark, low-reflecting environment induced pigmentation in just three days of exposure. Induced pigmentation was completely reversible upon switching microhabitats. Predator cues, however, did not enhance cryptic phenotypes, suggesting that environmental albedo induces changes in pigmentation improving concealment regardless of the perceived predation risk. Metabolic rate was higher in heavily pigmented individuals from dark environments, indicating a high energetic requirement of pigmentation that could impose a constraint to larval camouflage in dim habitats. Finally, we found partial evidence for larvae selecting backgrounds matching their induced phenotypes. However, in the presence of predator cues, larvae increased the time spent in light environments, which may reflect a escape response towards shallow waters rather than an attempt at increasing crypsisFinancial support was provided by the Spanish Ministry of Science and Innovation (MICINN), Grant CGL2012-40044 to IGM, and by the Universidad Autónoma de Madrid, Short Stay Grant to NPC. Additional financial support was provided by the MICINN, Grant CGL2015-68670-R to NP
- …
