1,021 research outputs found

    Mobile health in adults with congenital heart disease: Current use and future needs

    Get PDF
    Objective Many adults with congenital heart disease (CHD) are affected lifelong by cardiac events, particularly arrhythmias and heart failure. Despite the care provided, the cardiac event rate remains high. Mobile health (mHealth) brings opportunities to enhance daily monitoring and hence timely response in an attempt to improve outcome. However, it is not known if adults with CHD are currently using mHealth and what type of mHealth they may need in the near future. Methods Consecutive adult patients with CHD who visited the outpatient clinic at the Academic Medical Center in Amsterdam were asked to fill out questionnaires. Exclusion criteria for this study were mental impairment or inability to read and write Dutch. Results All 118 patients participated (median age 40 (range 18–78) years, 40 % male, 49 % symptomatic) and 92 % owned a smartphone. Whereas only a small minority (14 %) of patients used mHealth, the large majority (75 %) were willing to start. Most patients wanted to use mHealth in order to receive more information on physical health, and advice on progression of symptoms or signs of deterioration. Analyses on age, gender and complexity of defect showed significantly less current smartphone usage at older age, but no difference in interest or preferences in type of mHealth application for the near future. Conclusion The relatively young adult CHD population only rarely uses mHealth, but the majority are motivated to start using mHealth. New mHealth initiatives are required in these patients with a chronic condition who need lifelong surveillance in order to reveal if a reduction in morbidity and mortality and improvement in quality of life can be achieved

    A study of soft tissue sarcomas after childhood cancer in Britain

    Get PDF
    Among 16 541 3-year survivors of childhood cancer in Britain, 39 soft tissue sarcomas (STSs) occurred and 1.1 sarcomas were expected, yielding a standardised incidence ratio (SIR) of 16.1. When retinoblastomas were excluded from the cohort, the SIR for STSs was 15.9, and the cumulative risk of developing a soft tissue tumour after childhood cancer within 20 years of 3-year survival was 0.23%. In the case–control study, there was a significant excess of STSs in those patients exposed to both radiotherapy (RT) and chemotherapy, which was five times that observed among those not exposed (P=0.02). On the basis of individual radiation dosimetry, there was evidence of a strong dose–response effect with a significant increase in the risk of STS with increasing dose of RT (P<0.001). This effect remained significant in a multivariate model. The adjusted risk in patients exposed to RT doses of over 3000 cGy was over 50 times the risk in the unexposed. There was evidence of a dose–response effect with exposure to alkylating agents, the risk increasing substantially with increasing cumulative dose (P=0.05). This effect remained after adjusting for the effect of radiation exposure

    On Quantum Advantage in Information Theoretic Single-Server PIR

    Get PDF
    In (single-server) Private Information Retrieval (PIR), a server holds a large database DBDB of size nn, and a client holds an index i[n]i \in [n] and wishes to retrieve DB[i]DB[i] without revealing ii to the server. It is well known that information theoretic privacy even against an `honest but curious' server requires Ω(n)\Omega(n) communication complexity. This is true even if quantum communication is allowed and is due to the ability of such an adversarial server to execute the protocol on a superposition of databases instead of on a specific database (`input purification attack'). Nevertheless, there have been some proposals of protocols that achieve sub-linear communication and appear to provide some notion of privacy. Most notably, a protocol due to Le Gall (ToC 2012) with communication complexity O(n)O(\sqrt{n}), and a protocol by Kerenidis et al. (QIC 2016) with communication complexity O(log(n))O(\log(n)), and O(n)O(n) shared entanglement. We show that, in a sense, input purification is the only potent adversarial strategy, and protocols such as the two protocols above are secure in a restricted variant of the quantum honest but curious (a.k.a specious) model. More explicitly, we propose a restricted privacy notion called \emph{anchored privacy}, where the adversary is forced to execute on a classical database (i.e. the execution is anchored to a classical database). We show that for measurement-free protocols, anchored security against honest adversarial servers implies anchored privacy even against specious adversaries. Finally, we prove that even with (unlimited) pre-shared entanglement it is impossible to achieve security in the standard specious model with sub-linear communication, thus further substantiating the necessity of our relaxation. This lower bound may be of independent interest (in particular recalling that PIR is a special case of Fully Homomorphic Encryption)

    Intra-observer and interobserver variability of biventricular function, volumes and mass in patients with congenital heart disease measured by CMR imaging

    Get PDF
    Cardiovascular magnetic resonance (CMR) imaging provides highly accurate measurements of biventricular volumes and mass and is frequently used in the follow-up of patients with acquired and congenital heart disease (CHD). Data on reproducibility are limited in patients with CHD, while measurements should be reproducible, since CMR imaging has a main contribution to decision making and timing of (re)interventions. The aim of this study was to assess intra-observer and interobserver variability of biventricular function, volumes and mass in a heterogeneous group of patients with CHD using CMR imaging. Thirty-five patients with CHD (7–62 years) were included in this study. A short axis set was acquired using a steady-state free precession pulse sequence. Intra-observer and interobserver variability was assessed for left ventricular (LV) and right ventricular (RV) volumes, function and mass by calculating the coefficient of variability. Intra-observer variability was between 2.9 and 6.8% and interobserver variability was between 3.9 and 10.2%. Overall, variations were smallest for biventricular end-diastolic volume and highest for biventricular end-systolic volume. Intra-observer and interobserver variability of biventricular parameters assessed by CMR imaging is good for a heterogeneous group of patients with CHD. CMR imaging is an accurate and reproducible method and should allow adequate assessment of changes in ventricular size and global ventricular function

    Ciliary Neurotrophic Factor Protects Striatal Neurons against Excitotoxicity by Enhancing Glial Glutamate Uptake

    Get PDF
    Ciliary neurotrophic factor (CNTF) is a potent neuroprotective cytokine in different animal models of glutamate-induced excitotoxicity, although its action mechanisms are still poorly characterized. We tested the hypothesis that an increased function of glial glutamate transporters (GTs) could underlie CNTF-mediated neuroprotection. We show that neuronal loss induced by in vivo striatal injection of the excitotoxin quinolinic acid (QA) was significantly reduced (by ∼75%) in CNTF-treated animals. In striatal slices, acute QA application dramatically inhibited corticostriatal field potentials (FPs), whose recovery was significantly higher in CNTF rats compared to controls (∼40% vs. ∼7%), confirming an enhanced resistance to excitotoxicity. The GT inhibitor dl-threo-β-benzyloxyaspartate greatly reduced FP recovery in CNTF rats, supporting the role of GT in CNTF-mediated neuroprotection. Whole-cell patch-clamp recordings from striatal medium spiny neurons showed no alteration of basic properties of striatal glutamatergic transmission in CNTF animals, but the increased effect of a low-affinity competitive glutamate receptor antagonist (γ-d-glutamylglycine) also suggested an enhanced GT function. These data strongly support our hypothesis that CNTF is neuroprotective via an increased function of glial GTs, and further confirms the therapeutic potential of CNTF for the clinical treatment of progressive neurodegenerative diseases involving glutamate overflow

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    The chemokine receptor CXCR5 is pivotal for ectopic mucosa-associated lymphoid tissue neogenesis in chronic Helicobacter pylori-induced inflammation

    Get PDF
    Ectopic lymphoid follicles are a key feature of chronic inflammatory autoimmune and infectious diseases, such as rheumatoid arthritis, Sjögren's syndrome, and Helicobacter pylori-induced gastritis. Homeostatic chemokines are considered to be involved in the formation of such tertiary lymphoid tissue. High expression of CXCL13 and its receptor, CXCR5, has been associated with the formation of ectopic lymphoid follicles in chronic infectious diseases. Here, we defined the role of CXCR5 in the development of mucosal tertiary lymphoid tissue and gastric inflammation in a mouse model of chronic H. pylori infection. CXCR5-deficient mice failed to develop organized gastric lymphoid follicles despite similar bacterial colonization density as infected wild-type mice. CXCR5 deficiency altered Th17 responses but not Th1-type cellular immune responses to H. pylori infection. Furthermore, CXCR5-deficient mice exhibited lower H. pylori-specific serum IgG and IgA levels and an overall decrease in chronic gastric immune responses. In conclusion, the development of mucosal tertiary ectopic follicles during chronic H. pylori infection is strongly dependent on the CXCL13/CXCR5 signaling axis, and lack of de novo lymphoid tissue formation attenuates chronic immune responses

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore