774 research outputs found

    Virtual Interactive Surgical Skills Classroom: Protocol for a Parallel-Group, Noninferiority, Adjudicator-Blinded, Randomized Controlled Trial (VIRTUAL)

    Get PDF
    BACKGROUND: Traditional face-to-face training (FFT) for basic surgical skills is inaccessible and resource-intensive. Noninteractive computer-based learning is more economical but less educationally beneficial. Virtual classroom training (VCT) is a novel method that permits distanced interactive expert instruction. VCT may optimize resources and increase accessibility. OBJECTIVE: We aim to investigate whether VCT is superior to computer-based learning and noninferior to FFT in improving proficiency in basic surgical skills. METHODS: This is a protocol for a parallel-group, noninferiority, randomized controlled trial. A sample of 72 undergraduates will be recruited from 5 medical schools in London. Participants will be stratified by subjective and objective suturing experience level and allocated to 3 intervention groups at a 1:1:1 ratio. VCT will be delivered using the BARCO weConnect software, and FFT will be provided by expert instructors. Optimal student-to-teacher ratios of 12:1 for VCT and 4:1 for FFT will be maintained. The assessed task will be interrupted suturing with hand-tied knots. RESULTS: The primary outcome will be the postintervention Objective Structured Assessment of Technical Skills score, adjudicated by 2 experts blinded to the study and adjusted for baseline proficiency. The noninferiority margin (δ) will be defined using historical data. CONCLUSIONS: This study will serve as a comprehensive appraisal of the suitability of virtual basic surgical skills classroom training as an alternative to FFT. Our findings will assist the development and implementation of further resource-efficient, accessible, virtual basic surgical skills training programs during the COVID-19 pandemic and in the future. TRIAL REGISTRATION: International Standard Randomized Controlled Trial Number ISRCTN12448098; https://www.isrctn.com/ISRCTN12448098. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): PRR1-10.2196/28671

    SILAC-based proteomic quantification of chemoattractant-induced cytoskeleton dynamics on a second to minute timescale

    Get PDF
    Cytoskeletal dynamics during cell behaviours ranging from endocytosis and exocytosis to cell division and movement is controlled by a complex network of signalling pathways, the full details of which are as yet unresolved. Here we show that SILAC-based proteomic methods can be used to characterize the rapid chemoattractant-induced dynamic changes in the actin–myosin cytoskeleton and regulatory elements on a proteome-wide scale with a second to minute timescale resolution. This approach provides novel insights in the ensemble kinetics of key cytoskeletal constituents and association of known and novel identified binding proteins. We validate the proteomic data by detailed microscopy-based analysis of in vivo translocation dynamics for key signalling factors. This rapid large-scale proteomic approach may be applied to other situations where highly dynamic changes in complex cellular compartments are expected to play a key role

    Spontaneous and deliberate future thinking: A dual process account

    Get PDF
    © 2019 Springer Nature.This is the final published version of an article published in Psychological Research, licensed under a Creative Commons Attri-bution 4.0 International License. Available online at: https://doi.org/10.1007/s00426-019-01262-7.In this article, we address an apparent paradox in the literature on mental time travel and mind-wandering: How is it possible that future thinking is both constructive, yet often experienced as occurring spontaneously? We identify and describe two ‘routes’ whereby episodic future thoughts are brought to consciousness, with each of the ‘routes’ being associated with separable cognitive processes and functions. Voluntary future thinking relies on controlled, deliberate and slow cognitive processing. The other, termed involuntary or spontaneous future thinking, relies on automatic processes that allows ‘fully-fledged’ episodic future thoughts to freely come to mind, often triggered by internal or external cues. To unravel the paradox, we propose that the majority of spontaneous future thoughts are ‘pre-made’ (i.e., each spontaneous future thought is a re-iteration of a previously constructed future event), and therefore based on simple, well-understood, memory processes. We also propose that the pre-made hypothesis explains why spontaneous future thoughts occur rapidly, are similar to involuntary memories, and predominantly about upcoming tasks and goals. We also raise the possibility that spontaneous future thinking is the default mode of imagining the future. This dual process approach complements and extends standard theoretical approaches that emphasise constructive simulation, and outlines novel opportunities for researchers examining voluntary and spontaneous forms of future thinking.Peer reviewe

    Study of the reaction e^{+}e^{-} -->J/psi\pi^{+}\pi^{-} via initial-state radiation at BaBar

    Get PDF
    We study the process e+eJ/ψπ+πe^+e^-\to J/\psi\pi^{+}\pi^{-} with initial-state-radiation events produced at the PEP-II asymmetric-energy collider. The data were recorded with the BaBar detector at center-of-mass energies 10.58 and 10.54 GeV, and correspond to an integrated luminosity of 454 fb1\mathrm{fb^{-1}}. We investigate the J/ψπ+πJ/\psi \pi^{+}\pi^{-} mass distribution in the region from 3.5 to 5.5 GeV/c2\mathrm{GeV/c^{2}}. Below 3.7 GeV/c2\mathrm{GeV/c^{2}} the ψ(2S)\psi(2S) signal dominates, and above 4 GeV/c2\mathrm{GeV/c^{2}} there is a significant peak due to the Y(4260). A fit to the data in the range 3.74 -- 5.50 GeV/c2\mathrm{GeV/c^{2}} yields a mass value 4244±54244 \pm 5 (stat) ±4 \pm 4 (syst)MeV/c2\mathrm{MeV/c^{2}} and a width value 11415+16114 ^{+16}_{-15} (stat)±7 \pm 7(syst)MeV\mathrm{MeV} for this state. We do not confirm the report from the Belle collaboration of a broad structure at 4.01 GeV/c2\mathrm{GeV/c^{2}}. In addition, we investigate the π+π\pi^{+}\pi^{-} system which results from Y(4260) decay

    Evaluating the role of quality assessment of primary studies in systematic reviews of cancer practice guidelines

    Get PDF
    BACKGROUND: The purpose of this study was to evaluate the role of study quality assessment of primary studies in cancer practice guidelines. METHODS: Reliable and valid study quality assessment scales were sought and applied to published reports of trials included in systematic reviews of cancer guidelines. Sensitivity analyses were performed to evaluate the relationship between quality scores and pooled odds ratios (OR) for mortality and need for blood transfusion. RESULTS: Results found that that whether trials were classified as high or low quality depended on the scale used to assess them. Although the results of the sensitivity analyses found some variation in the ORs observed, the confidence intervals (CIs) of the pooled effects from each of the analyses of high quality trials overlapped with the CI of the pooled odds of all trials. Quality score was not predictive of pooled ORs studied here. CONCLUSIONS: Had sensitivity analyses based on study quality been conducted prospectively, it is highly unlikely that different conclusions would have been found or that different clinical recommendations would have emerged in the guidelines

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV
    corecore