64 research outputs found

    HLA-associated susceptibility to childhood B-cell precursor ALL: definition and role of HLA-DPB1 supertypes

    Get PDF
    Childhood B-cell precursor (BCP) ALL is thought to be caused by a delayed immune response to an unidentified postnatal infection. An association between BCP ALL and HLA class II (DR, DQ, DP) alleles could provide further clues to the identity of the infection, since HLA molecules exhibit allotype-restricted binding of infection-derived antigenic peptides. We clustered >30 HLA-DPB1 alleles into six predicted peptide-binding supertypes (DP1, 2, 3, 4, 6, and 8), based on amino acid di-morphisms at positions 11 (G/L), 69 (E/K), and 84 (G/D) of the DPβ1 domain. We found that the DPβ11-69-84 supertype GEG (DP2), was 70% more frequent in BCP ALL (n=687; P<10−4), and 98% more frequent in cases diagnosed between 3 and 6 years (P<10−4), but not <3 or >6 years, than in controls. Only one of 21 possible DPB1 supergenotypes, GEG/GKG (DP2/DP4) was significantly more frequent in BCP ALL (P=0.00004) than controls. These results suggest that susceptibility to BCP ALL is associated with the DP2 supertype, which is predicted to bind peptides with positively charged, nonpolar aromatic residues at the P4 position, and hydrophobic residues at the P1 and P6 positions. Studies of peptide binding by DP2 alleles could help to identify infection(s) carrying these peptides

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Quality Indicators for Colonoscopy Procedures: A Prospective Multicentre Method for Endoscopy Units

    Get PDF
    BACKGROUND AND AIMS: Healthcare professionals are required to conduct quality control of endoscopy procedures, and yet there is no standardised method for assessing quality. The topic of the present study was to validate the applicability of the procedure in daily practice, giving physicians the ability to define areas for continuous quality improvement. METHODS: In ten endoscopy units in France, 200 patients per centre undergoing colonoscopy were enrolled in the study. An evaluation was carried out based on a prospectively developed checklist of 10 quality-control indicators including five dependent upon and five independent of the colonoscopy procedure. RESULTS: Of the 2000 procedures, 30% were done at general hospitals, 20% at university hospitals, and 50% in private practices. The colonoscopies were carried out for a valid indication for 95.9% (range 92.5-100). Colon preparation was insufficient in 3.7% (range 1-10.5). Colonoscopies were successful in 95.3% (range 81-99). Adenoma detection rate was 0.31 (range 0.17-0.45) in successful colonoscopies. CONCLUSION: This tool for evaluating the quality of colonoscopy procedures in healthcare units is based on standard endoscopy and patient criteria. It is an easy and feasible procedure giving the ability to detect suboptimal practice and differences between endoscopy-units. It will enable individual units to assess the quality of their colonoscopy techniques

    Distinct Roles of Non-Canonical Poly(A) Polymerases in RNA Metabolism

    Get PDF
    Trf4p and Trf5p are non-canonical poly(A) polymerases and are part of the heteromeric protein complexes TRAMP4 and TRAMP5 that promote the degradation of aberrant and short-lived RNA substrates by interacting with the nuclear exosome. To assess the level of functional redundancy between the paralogous Trf4 and Trf5 proteins and to investigate the role of the Trf4-dependent polyadenylation in vivo, we used DNA microarrays to compare gene expression of the wild-type yeast strain of S. cerevisiae with either that of trf4Δ or trf5Δ mutant strains or the trf4Δ mutant expressing the polyadenylation-defective Trf4(DADA) protein. We found little overlap between the sets of transcripts with altered expression in the trf4Δ or the trf5Δ mutants, suggesting that Trf4p and Trf5p target distinct groups of RNAs for degradation. Surprisingly, most RNAs the expression of which was altered by the trf4 deletion were restored to wild-type levels by overexpression of TRF4(DADA), showing that the polyadenylation activity of Trf4p is dispensable in vivo. Apart from previously reported Trf4p and Trf5p target RNAs, this analysis along with in vivo cross-linking and RNA immunopurification-chip experiments revealed that both the TRAMP4 and the TRAMP5 complexes stimulate the degradation of spliced-out introns via a mechanism that is independent of the polyadenylation activity of Trf4p. In addition, we show that disruption of trf4 causes severe shortening of telomeres suggesting that TRF4 functions in the maintenance of telomere length. Finally, our study demonstrates that TRF4, the exosome, and TRF5 participate in antisense RNA–mediated regulation of genes involved in phosphate metabolism. In conclusion, our results suggest that paralogous TRAMP complexes have distinct RNA selectivities with functional implications in RNA surveillance as well as other RNA–related processes. This indicates widespread and integrative functions of TRAMP complexes for the coordination of different gene expression regulatory processes

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    CMS Data Processing Workflows during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Aligning the CMS Muon Chambers with the Muon Alignment System during an Extended Cosmic Ray Run

    Get PDF
    Peer reviewe

    Commissioning of the CMS high-level trigger with cosmic rays

    Get PDF
    This is the Pre-print version of the Article. The official published version of the paper can be accessed from the link below - Copyright @ 2010 IOPThe CMS High-Level Trigger (HLT) is responsible for ensuring that data samples with potentially interesting events are recorded with high efficiency and good quality. This paper gives an overview of the HLT and focuses on its commissioning using cosmic rays. The selection of triggers that were deployed is presented and the online grouping of triggered events into streams and primary datasets is discussed. Tools for online and offline data quality monitoring for the HLT are described, and the operational performance of the muon HLT algorithms is reviewed. The average time taken for the HLT selection and its dependence on detector and operating conditions are presented. The HLT performed reliably and helped provide a large dataset. This dataset has proven to be invaluable for understanding the performance of the trigger and the CMS experiment as a whole.This work is supported by FMSR (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES (Croatia); RPF (Cyprus); Academy of Sciences and NICPB (Estonia); Academy of Finland, ME, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); GSRT (Greece); OTKA and NKTH (Hungary); DAE and DST (India); IPM (Iran); SFI (Ireland); INFN (Italy); NRF (Korea); LAS (Lithuania); CINVESTAV, CONACYT, SEP, and UASLP-FAI (Mexico); PAEC (Pakistan); SCSR (Poland); FCT (Portugal); JINR (Armenia, Belarus, Georgia, Ukraine, Uzbekistan); MST and MAE (Russia); MSTDS (Serbia); MICINN and CPAN (Spain); Swiss Funding Agencies (Switzerland); NSC (Taipei); TUBITAK and TAEK (Turkey); STFC (United Kingdom); DOE and NSF (USA)

    Identification and Filtering of Uncharacteristic Noise in the CMS Hadron Calorimeter

    Get PDF
    VertaisarvioitupeerReviewe

    Performance of CMS Hadron Calorimeter Timing and Synchronization using Test Beam, Cosmic Ray, and LHC Beam Data

    Get PDF
    Peer reviewe
    • …
    corecore