188 research outputs found

    Measurement of the branching fraction and CP content for the decay B(0) -> D(*+)D(*-)

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APS.We report a measurement of the branching fraction of the decay B0→D*+D*- and of the CP-odd component of its final state using the BABAR detector. With data corresponding to an integrated luminosity of 20.4  fb-1 collected at the Υ(4S) resonance during 1999–2000, we have reconstructed 38 candidate signal events in the mode B0→D*+D*- with an estimated background of 6.2±0.5 events. From these events, we determine the branching fraction to be B(B0→D*+D*-)=[8.3±1.6(stat)±1.2(syst)]×10-4. The measured CP-odd fraction of the final state is 0.22±0.18(stat)±0.03(syst).This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A.P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    Measurement of D-s(+) and D-s(*+) production in B meson decays and from continuum e(+)e(-) annihilation at √s=10.6 GeV

    Get PDF
    This is the pre-print version of the Article. The official published version can be accessed from the links below. Copyright @ 2002 APSNew measurements of Ds+ and Ds*+ meson production rates from B decays and from qq̅ continuum events near the Υ(4S) resonance are presented. Using 20.8 fb-1 of data on the Υ(4S) resonance and 2.6 fb-1 off-resonance, we find the inclusive branching fractions B(B⃗Ds+X)=(10.93±0.19±0.58±2.73)% and B(B⃗Ds*+X)=(7.9±0.8±0.7±2.0)%, where the first error is statistical, the second is systematic, and the third is due to the Ds+→φπ+ branching fraction uncertainty. The production cross sections σ(e+e-→Ds+X)×B(Ds+→φπ+)=7.55±0.20±0.34pb and σ(e+e-→Ds*±X)×B(Ds+→φπ+)=5.8±0.7±0.5pb are measured at center-of-mass energies about 40 MeV below the Υ(4S) mass. The branching fractions ΣB(B⃗Ds(*)+D(*))=(5.07±0.14±0.30±1.27)% and ΣB(B⃗Ds*+D(*))=(4.1±0.2±0.4±1.0)% are determined from the Ds(*)+ momentum spectra. The mass difference m(Ds+)-m(D+)=98.4±0.1±0.3MeV/c2 is also measured.This work was supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF (Germany), INFN (Italy), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the Swiss NSF, A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation

    A reporting format for leaf-level gas exchange data and metadata

    Get PDF
    Leaf-level gas exchange data support the mechanistic understanding of plant fluxes of carbon and water. These fluxes inform our understanding of ecosystem function, are an important constraint on parameterization of terrestrial biosphere models, are necessary to understand the response of plants to global environmental change, and are integral to efforts to improve crop production. Collection of these data using gas analyzers can be both technically challenging and time consuming, and individual studies generally focus on a small range of species, restricted time periods, or limited geographic regions. The high value of these data is exemplified by the many publications that reuse and synthesize gas exchange data, however the lack of metadata and data reporting conventions make full and efficient use of these data difficult. Here we propose a reporting format for leaf-level gas exchange data and metadata to provide guidance to data contributors on how to store data in repositories to maximize their discoverability, facilitate their efficient reuse, and add value to individual datasets. For data users, the reporting format will better allow data repositories to optimize data search and extraction, and more readily integrate similar data into harmonized synthesis products. The reporting format specifies data table variable naming and unit conventions, as well as metadata characterizing experimental conditions and protocols. For common data types that were the focus of this initial version of the reporting format, i.e., survey measurements, dark respiration, carbon dioxide and light response curves, and parameters derived from those measurements, we took a further step of defining required additional data and metadata that would maximize the potential reuse of those data types. To aid data contributors and the development of data ingest tools by data repositories we provided a translation table comparing the outputs of common gas exchange instruments. Extensive consultation with data collectors, data users, instrument manufacturers, and data scientists was undertaken in order to ensure that the reporting format met community needs. The reporting format presented here is intended to form a foundation for future development that will incorporate additional data types and variables as gas exchange systems and measurement approaches advance in the future. The reporting format is published in the U.S. Department of Energy's ESS-DIVE data repository, with documentation and future development efforts being maintained in a version control system

    Forest biodiversity, ecosystem functioning and the provision of ecosystem services

    Get PDF
    Forests are critical habitats for biodiversity and they are also essential for the provision of a wide range of ecosystem services that are important to human well-being. There is increasing evidence that biodiversity contributes to forest ecosystem functioning and the provision of ecosystem services. Here we provide a review of forest ecosystem services including biomass production, habitat provisioning services, pollination, seed dispersal, resistance to wind storms, fire regulation and mitigation, pest regulation of native and invading insects, carbon sequestration, and cultural ecosystem services, in relation to forest type, structure and diversity. We also consider relationships between forest biodiversity and multifunctionality, and trade-offs among ecosystem services. We compare the concepts of ecosystem processes, functions and services to clarify their definitions. Our review of published studies indicates a lack of empirical studies that establish quantitative and causal relationships between forest biodiversity and many important ecosystem services. The literature is highly skewed; studies on provisioning of nutrition and energy, and on cultural services, delivered by mixed-species forests are under-represented. Planted forests offer ample opportunity for optimising their composition and diversity because replanting after harvesting is a recurring process. Planting mixed-species forests should be given more consideration as they are likely to provide a wider range of ecosystem services within the forest and for adjacent land uses. This review also serves as the introduction to this special issue of Biodiversity and Conservation on various aspects of forest biodiversity and ecosystem services

    Measurement of the Ratio of b Quark Production Cross Sections in Antiproton-Proton Collisions at 630 GeV and 1800 GeV

    Full text link
    We report a measurement of the ratio of the bottom quark production cross section in antiproton-proton collisions at 630 GeV to 1800 GeV using bottom quarks with transverse momenta greater than 10.75 GeV identified through their semileptonic decays and long lifetimes. The measured ratio sigma(630)/sigma(1800) = 0.171 +/- .024 +/- .012 is in good agreement with next-to-leading order (NLO) quantum chromodynamics (QCD)

    Search for the radiative decays B ->rho gamma and B-0 ->omega gamma

    Get PDF
    A search of the exclusive radiative decays B-->rho(770)gamma and B-0-->omega(782)gamma is performed on a sample of about 84x10(6) B (B) over bar events collected by the BABAR detector at the SLAC PEP-II asymmetric-energy e(+)e(-) storage ring. No significant signal is seen in any of the channels. We set upper limits on the branching fractions B of B(B-0-->rho(0)gamma)rho(+)gamma)omegagamma)rhogamma)=Gamma(B+-->rho(+)gamma)=2xGamma(B-0-->rho(0)gamma), we find the combined limit B(B-->rhogamma)rhogamma)/B(B-->K(*)gamma)<0.047 at 90% C.L

    Measurement of B-0 -> D-s(*)D+*(-) branching fractions and B-0 -> D-s*D+*(-) polarization with a partial reconstruction technique

    Get PDF
    We present a study of the decays B-0 --> D-s((*)) D*-, using 20.8 fb(-1) of e(+)e(-) annihilation data recorded with the BABAR detector. The analysis is conducted with a partial reconstruction technique, in which only the D-s((*)+) and the soft pion from the D*- decay are reconstructed. We measure the branching fractions B(B-0 --> Ds+D*-) = (1.03 +/- 0.14 +/- 0.13 +/- 0.26)% and B(B-0 --> D-s(*+) D*-) = (1.97 +/- 0.15 +/- 0.30+/- 0.49)%, where the first error is statistical, the second is systematic, and the third is the error due to the D-s(+) --> phipi(+) branching fraction uncertainty. From the B-0 --> D-s(*+) D*- angular distributions, we measure the fraction of longitudinal polarization Gamma(L)/Gamma = (51.9 +/- 5.0 +/- 2.8)%, which is consistent with theoretical predictions based on factorization

    Measurement of the B-0 lifetime with partially reconstructed B-0 -> D(*-)l(+)nu(l) decays (vol 89, art no 011802, 2002)

    Get PDF

    Search for D-0-(D)over-bar(0) mixing and a measurement of the doubly Cabibbo-suppressed decay rate in D-0 -> K pi decays

    Get PDF
    We present results of a search for D-0-(D) over bar (0) mixing and a measurement of R-D, the ratio of doubly Cabibbo-suppressed decays to Cabibbo-favored decays, using D-0-->K(+)pi(-) decays from 57.1 fb(-1) of data collected near roots=10.6 GeV with the BABAR detector at the PEP-II collider. At the 95% confidence level, allowing for CP violation, we find the mixing parameters x('2)<0.0022 and -0.056<y(')<0.039, and the mixing rate R-M<0.16%. In the limit of no mixing, R-D=[0.357+/-0.022(stat)+/-0.027(syst)]% and the CP-violating asymmetry A(D)=0.095+/-0.061(stat)+/-0.083(syst)
    corecore