Measurement of the Inclusive Charmless Semileptonic Branching Ratio of B Mesons and Determination of $\left|V_{u b}\right|$

B. Aubert, ${ }^{1}$ R. Barate, ${ }^{1}$ D. Boutigny, ${ }^{1}$ J.-M. Gaillard, ${ }^{1}$ A. Hicheur, ${ }^{1}$ Y. Karyotakis, ${ }^{1}$ J. P. Lees, ${ }^{1}$ P. Robbe, ${ }^{1}$ V. Tisserand, ${ }^{1}$ A. Zghiche, ${ }^{1}$ A. Palano, ${ }^{2}$ A. Pompili, ${ }^{2}$ J. C. Chen, ${ }^{3}$ N. D. Qi, ${ }^{3}$ G. Rong, ${ }^{3}$ P. Wang, ${ }^{3}$ Y. S. Zhu, ${ }^{3}$ G. Eigen, ${ }^{4}$ I. Ofte, ${ }^{4}$ B. Stugu, ${ }^{4}$ G. S. Abrams, ${ }^{5}$ A.W. Borgland, ${ }^{5}$ A. B. Breon, ${ }^{5}$ D. N. Brown, ${ }^{5}$ J. Button-Shafer, ${ }^{5}$ R. N. Cahn, ${ }^{5}$ E. Charles, ${ }^{5}$ C. T. Day, ${ }^{5}$ M. S. Gill, ${ }^{5}$ A.V. Gritsan, ${ }^{5}$ Y. Groysman, ${ }^{5}$ R. G. Jacobsen, ${ }^{5}$ R. W. Kadel, ${ }^{5}$ J. Kadyk, ${ }^{5}$ L. T. Kerth, ${ }^{5}$ Yu. G. Kolomensky, ${ }^{5}$ J. F. Kral, ${ }^{5}$ G. Kukartsev, ${ }^{5}$ C. LeClerc, ${ }^{5}$ M. E. Levi, ${ }^{5}$ G. Lynch, ${ }^{5}$ L. M. Mir, ${ }^{5}$ P. J. Oddone, ${ }^{5}$ T. J. Orimoto, ${ }^{5}$ M. Pripstein, ${ }^{5}$ N. A. Roe, ${ }^{5}$ A. Romosan, ${ }^{5}$ M. T. Ronan, ${ }^{5}$ V. G. Shelkov, ${ }^{5}$ A. V. Telnov, ${ }^{5}$ W. A. Wenzel, ${ }^{5}$ K. Ford, ${ }^{6}$ T. J. Harrison, ${ }^{6}$ C. M. Hawkes, ${ }^{6}$ D. J. Knowles, ${ }^{6}$ S. E. Morgan, ${ }^{6}$ R. C. Penny, ${ }^{6}$ A. T. Watson, ${ }^{6}$ N. K. Watson, ${ }^{6}$ T. Deppermann, ${ }^{7}$ K. Goetzen, ${ }^{7}$ H. Koch, ${ }^{7}$ B. Lewandowski, ${ }^{7}$ M. Pelizaeus, ${ }^{7}$ K. Peters, ${ }^{7}$ H. Schmuecker, ${ }^{7}$ M. Steinke, ${ }^{7}$ N. R. Barlow, ${ }^{8}$ J. T. Boyd, ${ }^{8}$ N. Chevalier, ${ }^{8}$ W. N. Cottingham, ${ }^{8}$ M. P. Kelly, ${ }^{8}$ T. E. Latham, ${ }^{8}$ C. Mackay, ${ }^{8}$ F. F. Wilson, ${ }^{8}$ K. Abe, ${ }^{9}$ T. Cuhadar-Donszelmann, ${ }^{9}$ C. Hearty, ${ }^{9}$ T. S. Mattison, ${ }^{9}$ J. A. McKenna, ${ }^{9}$ D. Thiessen, ${ }^{9}$ P. Kyberd, ${ }^{10}$ A. K. McKemey, ${ }^{10}$ V. E. Blinov, ${ }^{11}$ A. D. Bukin, ${ }^{11}$ V. B. Golubev, ${ }^{11}$ V. N. Ivanchenko, ${ }^{11}$ E. A. Kravchenko, ${ }^{11}$ A. P. Onuchin, ${ }^{11}$ S. I. Serednyakov, ${ }^{11}$ Yu. I. Skovpen, ${ }^{11}$ E. P. Solodov, ${ }^{11}$ A. N. Yushkov, ${ }^{11}$ D. Best, ${ }^{12}$ M. Chao, ${ }^{12}$ D. Kirkby ${ }^{12}$ A. J. Lankford, ${ }^{12}$ M. Mandelkern, ${ }^{12}$ S. McMahon, ${ }^{12}$ R. K. Mommsen, ${ }^{12}$ W. Roethel, ${ }^{12}$ D. P. Stoker, ${ }^{12}$ C. Buchanan, ${ }^{13}$ D. del Re, ${ }^{14}$ H. K. Hadavand, ${ }^{14}$ E. J. Hill, ${ }^{14}$ D. B. MacFarlane, ${ }^{14}$ H. P. Paar, ${ }^{14}$ Sh. Rahatlou, ${ }^{14}$ U. Schwanke, ${ }^{14}$ V. Sharma, ${ }^{14}$ J.W. Berryhill, ${ }^{15}$ C. Campagnari, ${ }^{15}$ B. Dahmes, ${ }^{15}$ N. Kuznetsova, ${ }^{15}$ S. L. Levy, ${ }^{15}$ O. Long, ${ }^{15}$ A. Lu, ${ }^{15}$ M. A. Mazur, ${ }^{15}$ J. D. Richman, ${ }^{15}$ W. Verkerke, ${ }^{15}$ T.W. Beck, ${ }^{16}$ J. Beringer, ${ }^{16}$ A. M. Eisner, ${ }^{16}$ C. A. Heusch, ${ }^{16}$ W. S. Lockman, ${ }^{16}$ T. Schalk, ${ }^{16}$ R. E. Schmitz, ${ }^{16}$ B. A. Schumm, ${ }^{16}$ A. Seiden, ${ }^{16}$ M. Turri, ${ }^{16}$ W. Walkowiak, ${ }^{16}$ D. C. Williams, ${ }^{16}$ M. G. Wilson, ${ }^{16}$ J. Albert, ${ }^{17}$ E. Chen, ${ }^{17}$ G. P. Dubois-Felsmann, ${ }^{17}$ A. Dvoretskii, ${ }^{17}$ D. G. Hitlin, ${ }^{17}$ I. Narsky, ${ }^{17}$ F. C. Porter, ${ }^{17}$ A. Ryd, ${ }^{17}$ A. Samuel, ${ }^{17}$ S. Yang, ${ }^{17}$ S. Jayatilleke, ${ }^{18}$ G. Mancinelli, ${ }^{18}$ B. T. Meadows, ${ }^{18}$ M. D. Sokoloff, ${ }^{18}$ T. Abe, ${ }^{19}$ T. Barillari, ${ }^{19}$ F. Blanc, ${ }^{19}$ P. Bloom, ${ }^{19}$ S. Chen, ${ }^{19}$ P. J. Clark, ${ }^{19}$ W. T. Ford, ${ }^{19}$ U. Nauenberg, ${ }^{19}$ A. Olivas, ${ }^{19}$ P. Rankin, ${ }^{19}$ J. Roy, ${ }^{19}$ J. G. Smith, ${ }^{19}$ W. C. van Hoek, ${ }^{19}$ L. Zhang, ${ }^{19}$ J. L. Harton, ${ }^{20}$ T. Hu, ${ }^{20}$ A. Soffer, ${ }^{20}$ W. H. Toki, ${ }^{20}$ R. J. Wilson, ${ }^{20}$ J. Zhang, ${ }^{20}$ D. Altenburg, ${ }^{21}$ T. Brandt, ${ }^{21}$ J. Brose, ${ }^{21}$ T. Colberg, ${ }^{21}$ M. Dickopp, ${ }^{21}$ R. S. Dubitzky, ${ }^{21}$ A. Hauke, ${ }^{21}$ H. M. Lacker, ${ }^{21}$ E. Maly, ${ }^{21}$ R. Müller-Pfefferkorn, ${ }^{21}$ R. Nogowski, ${ }^{21}$ S. Otto, ${ }^{21}$ K. R. Schubert, ${ }^{21}$ R. Schwierz, ${ }^{21}$ B. Spaan,,${ }^{21}$ L. Wilden, ${ }^{21}$
D. Bernard, ${ }^{22}$ G. R. Bonneaud, ${ }^{22}$ F. Brochard, ${ }^{22}$ J. Cohen-Tanugi, ${ }^{22}$ Ch. Thiebaux, ${ }^{22}$ G. Vasileiadis, ${ }^{22}$ M. Verderi, ${ }^{22}$ A. Khan, ${ }^{23}$ D. Lavin, ${ }^{23}$ F. Muheim, ${ }^{23}$ S. Playfer, ${ }^{23}$ J. E. Swain, ${ }^{23}$ J. Tinslay, ${ }^{23}$ M. Andreotti, ${ }^{24}$ D. Bettoni, ${ }^{24}$ C. Bozzi, ${ }^{24}$ R. Calabrese, ${ }^{24}$ G. Cibinetto, ${ }^{24}$ E. Luppi, ${ }^{24}$ M. Negrini, ${ }^{24}$ L. Piemontese, ${ }^{24}$ A. Sarti, ${ }^{24}$ E. Treadwell, ${ }^{25}$ F. Anulli, ${ }^{26}$,* R. Baldini-Ferroli, ${ }^{26}$ A. Calcaterra, ${ }^{26}$ R. de Sangro, ${ }^{26}$ D. Falciai, ${ }^{26}$ G. Finocchiaro, ${ }^{26}$ P. Patteri, ${ }^{26}$ I. M. Peruzzi, ${ }^{26, *}$ M. Piccolo, ${ }^{26}$ A. Zallo, ${ }^{26}$ A. Buzzo, ${ }^{27}$ R. Contri, ${ }^{27}$ G. Crosetti, ${ }^{27}$ M. Lo Vetere, ${ }^{27}$ M. Macri, ${ }^{27}$ M. R. Monge, ${ }^{27}$ S. Passaggio, ${ }^{27}$ F. C. Pastore, ${ }^{27}$ C. Patrignani, ${ }^{27}$ E. Robutti, ${ }^{27}$ A. Santroni, ${ }^{27}$ S. Tosi, ${ }^{27}$ S. Bailey, ${ }^{28}$ M. Morii, ${ }^{28}$ M. L. Aspinwall, ${ }^{29}$ W. Bhimji, ${ }^{29}$ D. A. Bowerman, ${ }^{29}$ P. D. Dauncey, ${ }^{29}$ U. Egede, ${ }^{29}$ I. Eschrich, ${ }^{29}$ G. W. Morton, ${ }^{29}$ J. A. Nash,,29 P. Sanders, ${ }^{29}$ G. P. Taylor, ${ }^{29}$ G. J. Grenier, ${ }^{30}$ S.-J. Lee, ${ }^{30}$ U. Mallik, ${ }^{30}$ J. Cochran, ${ }^{31}$ H. B. Crawley, ${ }^{31}$ J. Lamsa, ${ }^{31}$ W. T. Meyer, ${ }^{31}$ S. Prell, ${ }^{31}$ E. I. Rosenberg, ${ }^{31}$ J. Yi, ${ }^{31}$ M. Davier, ${ }^{32}$ G. Grosdidier, ${ }^{32}$ A. Höcker, ${ }^{32}$ S. Laplace, ${ }^{32}$ F. Le Diberder, ${ }^{32}$ V. Lepeltier, ${ }^{32}$ A. M. Lutz, ${ }^{32}$ T. C. Petersen, ${ }^{32}$ S. Plaszczynski, ${ }^{32}$ M. H. Schune, ${ }^{32}$ L. Tantot, ${ }^{32}$ G. Wormser, ${ }^{32}$ V. Brigljević, ${ }^{33}$ C. H. Cheng, ${ }^{33}$ D. J. Lange, ${ }^{33}$ D. M. Wright, ${ }^{33}$ A. J. Bevan, ${ }^{34}$ J. P. Coleman, ${ }^{34}$ J. R. Fry, ${ }^{34}$ E. Gabathuler, ${ }^{34}$ R. Gamet, ${ }^{34}$ M. Kay, ${ }^{34}$ R. J. Parry, ${ }^{34}$ D. J. Payne, ${ }^{34}$ R. J. Sloane, ${ }^{34}$ C. Touramanis, ${ }^{34}$ J. J. Back, ${ }^{35}$ P. F. Harrison, ${ }^{35}$ H.W. Shorthouse, ${ }^{35}$ P. Strother, ${ }^{35}$ P. B. Vidal, ${ }^{35}$ C. L. Brown, ${ }^{36}$ G. Cowan, ${ }^{36}$ R. L. Flack, ${ }^{36}$ H. U. Flaecher, ${ }^{36}$ S. George, ${ }^{36}$ M. G. Green, ${ }^{36}$ A. Kurup, ${ }^{36}$ C. E. Marker, ${ }^{36}$ T. R. McMahon, ${ }^{36}$ S. Ricciardi, ${ }^{36}$ F. Salvatore, ${ }^{36}$ G. Vaitsas, ${ }^{36}$ M. A. Winter, ${ }^{36}$ D. Brown, ${ }^{37}$ C. L. Davis, ${ }^{37}$ J. Allison, ${ }^{38}$ R. J. Barlow, ${ }^{38}$ A. C. Forti, ${ }^{38}$ P. A. Hart, ${ }^{38}$ F. Jackson, ${ }^{38}$ G. D. Lafferty, ${ }^{38}$ A. J. Lyon, ${ }^{38}$ J. H. Weatherall, ${ }^{38}$ J. C. Williams, ${ }^{38}$ A. Farbin, ${ }^{39}$ A. Jawahery, ${ }^{39}$ D. Kovalskyi, ${ }^{39}$ C. K. Lae, ${ }^{39}$ V. Lillard, ${ }^{39}$ D. A. Roberts, ${ }^{39}$ G. Blaylock, ${ }^{40}$ C. Dallapiccola, ${ }^{40}$ K. T. Flood, ${ }^{40}$ S. S. Hertzbach, ${ }^{40}$ R. Kofler, ${ }^{40}$ V. B. Koptchev, ${ }^{40}$ T. B. Moore, ${ }^{40}$ S. Saremi, ${ }^{40}$ H. Staengle, ${ }^{40}$ S. Willocq, ${ }^{40}$ R. Cowan, ${ }^{41}$ G. Sciolla, ${ }^{41}$ F. Taylor, ${ }^{41}$ R. K. Yamamoto, ${ }^{41}$ D. J. J. Mangeol, ${ }^{42}$ M. Milek, ${ }^{42}$ P. M. Patel, ${ }^{42}$ A. Lazzaro, ${ }^{43}$ F. Palombo, ${ }^{43}$ J. M. Bauer, ${ }^{44}$ L. Cremaldi, ${ }^{44}$ V. Eschenburg, ${ }^{44}$ R. Godang, ${ }^{44}$ R. Kroeger, ${ }^{44}$ J. Reidy, ${ }^{44}$ D. A. Sanders, ${ }^{44}$ D. J. Summers, ${ }^{44}$ H.W. Zhao, ${ }^{44}$ C. Hast, ${ }^{45}$ P. Taras, ${ }^{45}$ H. Nicholson, ${ }^{46}$ C. Cartaro, ${ }^{47}$ N. Cavallo, ${ }^{47, \dagger}$ G. De Nardo, ${ }^{47}$ F. Fabozzi,,${ }^{47, \dagger}$ C. Gatto, ${ }^{47}$ L. Lista, ${ }^{47}$ P. Paolucci, ${ }^{47}$ D. Piccolo, ${ }^{47}$ C. Sciacca, ${ }^{47}$ M. A. Baak, ${ }^{48}$ G. Raven, ${ }^{48}$ J. M. LoSecco, ${ }^{49}$ T. A. Gabriel, ${ }^{50}$ B. Brau, ${ }^{51}$ T. Pulliam, ${ }^{51}$ J. Brau, ${ }^{52}$ R. Frey, ${ }^{52}$ C. T. Potter, ${ }^{52}$ N. B. Sinev, ${ }^{52}$ D. Strom, ${ }^{52}$ E. Torrence, ${ }^{52}$ F. Colecchia, ${ }^{53}$ A. Dorigo, ${ }^{53}$ F. Galeazzi, ${ }^{53}$ M. Margoni, ${ }^{53}$ M. Morandin, ${ }^{53}$ M. Posocco, ${ }^{53}$ M. Rotondo, ${ }^{53}$ F. Simonetto, ${ }^{53}$
R. Stroili, ${ }^{53}$ G. Tiozzo, ${ }^{53}$ C. Voci, ${ }^{53}$ M. Benayoun, ${ }^{54}$ H. Briand, ${ }^{54}$ J. Chauveau, ${ }^{54}$ P. David,,${ }^{54}$ Ch. de la Vaissière, ${ }^{54}$ L. Del Buono, ${ }^{54}$ O. Hamon, ${ }^{54}$ M. J. J. John, ${ }^{54}$ Ph. Leruste, ${ }^{54}$ J. Ocariz, ${ }^{54}$ M. Pivk,,${ }^{54}$ L. Roos, ${ }^{54}$ J. Stark, ${ }^{54}$ S. T'Jampens, ${ }^{54}$ P. F. Manfredi, ${ }^{55}$ V. Re,,${ }^{55}$ L. Gladney, ${ }^{56}$ Q. H. Guo, ${ }^{56}$ J. Panetta, ${ }^{56}$ C. Angelini, ${ }^{57}$ G. Batignani, ${ }^{57}$ S. Bettarini, ${ }^{57}$ M. Bondioli, ${ }^{57}$ F. Bucci, ${ }^{57}$ G. Calderini, ${ }^{57}$ M. Carpinelli, ${ }^{57}$ F. Forti, ${ }^{57}$ M. A. Giorgi, ${ }^{57}$ A. Lusiani, ${ }^{57}$ G. Marchiori, ${ }^{57}$ F. Martinez-Vidal, ${ }^{57,{ }^{5}}$ M. Morganti, ${ }^{57}$ N. Neri, ${ }^{57}$ E. Paoloni, ${ }^{57}$ M. Rama, ${ }^{57}$ G. Rizzo, ${ }^{57}$ F. Sandrelli, ${ }^{57}$ J. Walsh, ${ }^{57}$ M. Haire, ${ }^{58}$ D. Judd, ${ }^{58}$ K. Paick, ${ }^{58}$ D. E. Wagoner, ${ }^{58}$ N. Danielson, ${ }^{59}$ P. Elmer,,${ }^{59}$ C. Lu, ${ }^{59}$ V. Miftakov, ${ }^{59}$ J. Olsen,,${ }^{59}$ A. J. S. Smith, ${ }^{59}$ E. W. Varnes, ${ }^{59}$ F. Bellini, ${ }^{60}$ G. Cavoto, ${ }^{59,60}$ R. Faccini, ${ }^{14,60}$ F. Ferrarotto, ${ }^{60}$ F. Ferroni, ${ }^{60}$ M. Gaspero, ${ }^{60}$ M. A. Mazzoni, ${ }^{60}$ S. Morganti, ${ }^{60}$ M. Pierini, ${ }^{60}$ G. Piredda, ${ }^{60}$ F. Safai Tehrani, ${ }^{60}$ C. Voena, ${ }^{60}$ S. Christ,,${ }^{61}$ G. Wagner,,${ }^{61}$ R. Waldi, ${ }^{61}$ T. Adye, ${ }^{62}$ N. De Groot,,${ }^{62}$ B. Franek,,${ }^{62}$ N. I. Geddes, ${ }^{62}$ G. P. Gopal, ${ }^{62}$ E. O. Olaiya, ${ }^{62}$ S. M. Xella, ${ }^{62}$ R. Aleksan, ${ }^{63}$ S. Emery, ${ }^{63}$ A. Gaidot, ${ }^{63}$ S. F. Ganzhur, ${ }^{63}$ P.-F. Giraud, ${ }^{63}$ G. Hamel de Monchenault, ${ }^{63}$ W. Kozanecki,,${ }^{63}$ M. Langer, ${ }^{63}$ G.W. London, ${ }^{63}$ B. Mayer, ${ }^{63}$ G. Schott, ${ }^{63}$ G. Vasseur, ${ }^{63}$ Ch. Yeche, ${ }^{63}$ M. Zito, ${ }^{63}$ M.V. Purohit, ${ }^{64}$ A.W. Weidemann, ${ }^{64}$ F. X. Yumiceva, ${ }^{64}$ D. Aston, ${ }^{65}$ R. Bartoldus, ${ }^{65}$ N. Berger, ${ }^{65}$ A. M. Boyarski, ${ }^{65}$ O. L. Buchmueller, ${ }^{65}$ M. R. Convery, ${ }^{65}$ D. P. Coupal, ${ }^{65}$ D. Dong, ${ }^{65}$ J. Dorfan, ${ }^{65}$ D. Dujmic, ${ }^{65}$ W. Dunwoodie, ${ }^{65}$ R. C. Field,,${ }^{65}$ T. Glanzman, ${ }^{65}$ S. J. Gowdy, ${ }^{65}$ E. Grauges-Pous, ${ }^{65}$ T. Hadig, ${ }^{65}$ V. Halyo, ${ }^{65}$ T. Hryn'ova, ${ }^{65}$ W. R. Innes, ${ }^{65}$ C. P. Jessop, ${ }^{65}$ M. H. Kelsey, ${ }^{65}$ P. Kim, ${ }^{65}$ M. L. Kocian, ${ }^{65}$ U. Langenegger, ${ }^{65}$ D.W. G. S. Leith,,${ }^{65}$ S. Luitz, ${ }^{65}$ V. Luth,,${ }^{65}$ H. L. Lynch,,${ }^{65}$ H. Marsiske, ${ }^{65}$ S. Menke, ${ }^{65}$ R. Messner, ${ }^{65}$ D. R. Muller, ${ }^{65}$ C. P. O'Grady, ${ }^{65}$ V. E. Ozcan, ${ }^{65}$ A. Perazzo, ${ }^{65}$ M. Perl, ${ }^{65}$ S. Petrak, ${ }^{65}$ B. N. Ratcliff, ${ }^{65}$ S. H. Robertson, ${ }^{65}$ A. Roodman, ${ }^{65}$ A. A. Salnikov, ${ }^{65}$ R. H. Schindler, ${ }^{65}$ J. Schwiening, ${ }^{65}$ G. Simi, ${ }^{65}$ A. Snyder, ${ }^{65}$ A. Soha, ${ }^{65}$ J. Stelzer, ${ }^{65}$ D. Su, ${ }^{65}$ M. K. Sullivan, ${ }^{65}$ H. A. Tanaka, ${ }^{65}$ J. Va'vra, ${ }^{65}$ S. R. Wagner, ${ }^{65}$ M. Weaver, ${ }^{65}$ A. J. R. Weinstein, ${ }^{65}$ W. J. Wisniewski, ${ }^{65}$ D. H. Wright, ${ }^{65}$ C. C. Young, ${ }^{65}$ P. R. Burchat, ${ }^{66}$ A. J. Edwards, ${ }^{66}$ T. I. Meyer, ${ }^{66}$ C. Roat, ${ }^{66}$ S. Ahmed, ${ }^{67}$ M. S. Alam, ${ }^{67}$ J. A. Ernst, ${ }^{67}$ M. Saleem, ${ }^{67}$ F. R. Wappler, ${ }^{67}$ W. Bugg, ${ }^{68}$ M. Krishnamurthy, ${ }^{68}$ S. M. Spanier, ${ }^{68}$ R. Eckmann, ${ }^{69}$ H. Kim, ${ }^{69}$ J. L. Ritchie, ${ }^{69}$ R. F. Schwitters, ${ }^{69}$ J. M. Izen, ${ }^{70}$ I. Kitayama, ${ }^{70}$ X. C. Lou, ${ }^{70}$ S. Ye, ${ }^{70}$ F. Bianchi, ${ }^{71}$ M. Bona, ${ }^{71}$ F. Gallo, ${ }^{71}$ D. Gamba, ${ }^{71}$ C. Borean, ${ }^{72}$ L. Bosisio, ${ }^{72}$ G. Della Ricca, ${ }^{72}$ S. Dittongo, ${ }^{72}$ S. Grancagnolo, ${ }^{72}$ L. Lanceri, ${ }^{72}$ P. Poropat,,72,8 L. Vitale, ${ }^{72}$ G. Vuagnin, ${ }^{72}$ R. S. Panvini ${ }^{73}$ Sw. Banerjee, ${ }^{74}$ C. M. Brown, ${ }^{74}$ D. Fortin, ${ }^{74}$ P. D. Jackson, ${ }^{74}$ R. Kowalewski, ${ }^{74}$ J. M. Roney, ${ }^{74}$ H. R. Band, ${ }^{75}$ S. Dasu, ${ }^{75}$ M. Datta, ${ }^{75}$ A. M. Eichenbaum, ${ }^{75}$ H. Hu, ${ }^{75}$ J. R. Johnson, ${ }^{75}$ P. E. Kutter, ${ }^{75}$ H. Li, ${ }^{75}$ R. Liu, ${ }^{75}$ F. Di Lodovico, ${ }^{75}$ A. Mihalyi, ${ }^{75}$ A. K. Mohapatra, ${ }^{75}$ Y. Pan, ${ }^{75}$ R. Prepost, ${ }^{75}$ S. J. Sekula, ${ }^{75}$ J. H. von Wimmersperg-Toeller, ${ }^{75}$ J. Wu, ${ }^{75}$ S. L. Wu, ${ }^{75}$ Z. Yu, ${ }^{75}$ and H. Neal ${ }^{76}$

(BABAR Collaboration)

${ }^{1}$ Laboratoire de Physique des Particules, F-74941 Annecy-le-Vieux, France
${ }^{2}$ Università di Bari, Dipartimento di Fisica and INFN, I-70126 Bari, Italy
${ }^{3}$ Institute of High Energy Physics, Beijing 100039, China
${ }^{4}$ University of Bergen, Institute of Physics, N-5007 Bergen, Norway
${ }^{5}$ Lawrence Berkeley National Laboratory and University of California, Berkeley, California 94720, USA
${ }^{6}$ University of Birmingham, Birmingham, B15 2TT, United Kingdom
${ }^{7}$ Ruhr Universität Bochum, Institut für Experimentalphysik 1, D-44780 Bochum, Germany
${ }^{8}$ University of Bristol, Bristol BS8 1TL, United Kingdom
${ }^{9}$ University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1
${ }^{10}$ Brunel University, Uxbridge, Middlesex UB8 3PH, United Kingdom
${ }^{11}$ Budker Institute of Nuclear Physics, Novosibirsk 630090, Russia
${ }^{12}$ University of California at Irvine, Irvine, California 92697, USA
${ }^{13}$ University of California at Los Angeles, Los Angeles, California 90024, USA
${ }^{14}$ University of California at San Diego, La Jolla, California 92093, USA
${ }^{15}$ University of California at Santa Barbara, Santa Barbara, California 93106, USA
${ }^{16}$ University of California at Santa Cruz, Institute for Particle Physics, Santa Cruz, California 95064, USA
${ }^{17}$ California Institute of Technology, Pasadena, California 91125, USA
${ }^{18}$ University of Cincinnati, Cincinnati, Ohio 45221, USA
${ }^{19}$ University of Colorado, Boulder, Colorado 80309, USA
${ }^{20}$ Colorado State University, Fort Collins, Colorado 80523, USA
${ }^{21}$ Technische Universität Dresden, Institut für Kern- und Teilchenphysik, D-01062 Dresden, Germany
${ }_{22}$ Ecole Polytechnique, LLR, F-91128 Palaiseau, France
${ }^{23}$ University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom
${ }^{24}$ Università di Ferrara, Dipartimento di Fisica and INFN, I-44100 Ferrara, Italy
${ }^{25}$ Florida A\&M University, Tallahassee, Florida 32307, USA
${ }^{26}$ Laboratori Nazionali di Frascati dell'INFN, I-00044 Frascati, Italy
${ }^{27}$ Università di Genova, Dipartimento di Fisica and INFN, I-16146 Genova, Italy
${ }^{28}$ Harvard University, Cambridge, Massachusetts 02138, USA

${ }^{29}$ Imperial College London, London, SW7 2BW, United Kingdom
${ }^{30}$ University of Iowa, Iowa City, Iowa 52242, USA
${ }^{31}$ Iowa State University, Ames, Iowa 50011-3160, USA
${ }^{32}$ Laboratoire de l'Accélérateur Linéaire, F-91898 Orsay, France
${ }^{33}$ Lawrence Livermore National Laboratory, Livermore, California 94550, USA
${ }^{34}$ University of Liverpool, Liverpool L69 3BX, United Kingdom
${ }^{35}$ Queen Mary, University of London, E1 4NS, United Kingdom
${ }^{36}$ University of London, Royal Holloway and Bedford New College, Egham, Surrey TW20 0EX, United Kingdom
${ }^{37}$ University of Louisville, Louisville, Kentucky 40292, USA
${ }^{38}$ University of Manchester, Manchester M13 9PL, United Kingdom
${ }^{39}$ University of Maryland, College Park, Maryland 20742, USA
${ }^{40}$ University of Massachusetts, Amherst, Massachusetts 01003, USA
${ }^{41}$ Massachusetts Institute of Technology, Laboratory for Nuclear Science, Cambridge, Massachusetts 02139, USA
${ }^{42}$ McGill University, Montréal, Quebec, Canada H3A $2 T 8$
${ }^{43}$ Università di Milano, Dipartimento di Fisica and INFN, I-20133 Milano, Italy
${ }^{44}$ University of Mississippi, University, Mississippi 38677, USA
${ }^{45}$ Université de Montréal, Laboratoire René J. A. Lévesque, Montréal, Quebec, Canada H3C $3 J 7$
${ }^{46}$ Mount Holyoke College, South Hadley, Massachusetts 01075, USA
${ }^{47}$ Università di Napoli Federico II, Dipartimento di Scienze Fisiche and INFN, I-80126, Napoli, Italy
${ }^{48}$ NIKHEF, National Institute for Nuclear Physics and High Energy Physics, NL-1009 DB Amsterdam, The Netherlands
${ }^{49}$ University of Notre Dame, Notre Dame, Indiana 46556, USA
${ }^{50}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
${ }^{51}$ Ohio State University, Columbus, Ohio 43210, USA
${ }^{52}$ University of Oregon, Eugene, Oregon 97403, USA
${ }^{53}$ Università di Padova, Dipartimento di Fisica and INFN, I-35131 Padova, Italy
${ }^{54}$ Universités Paris VI et VII, Lab de Physique Nucléaire H. E., F-75252 Paris, France
${ }^{55}$ Università di Pavia, Dipartimento di Elettronica and INFN, I-27100 Pavia, Italy
${ }^{56}$ University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
${ }^{57}$ Università di Pisa, Dipartimento di Fisica, Scuola Normale Superiore and INFN, I-56127 Pisa, Italy
${ }^{58}$ Prairie View A\&M University, Prairie View, Texas 77446, USA
${ }^{59}$ Princeton University, Princeton, New Jersey 08544, USA
${ }^{60}$ Università di Roma La Sapienza, Dipartimento di Fisica and INFN, I-00185 Roma, Italy
${ }^{61}$ Universität Rostock, D-18051 Rostock, Germany
${ }^{62}$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxon, OX11 0QX, United Kingdom
${ }^{63}$ DSM/Dapnia, CEA/Saclay, F-91191 Gif-sur-Yvette, France
${ }^{64}$ University of South Carolina, Columbia, South Carolina 29208, USA
${ }^{65}$ Stanford Linear Accelerator Center, Stanford, California 94309, USA
${ }^{66}$ Stanford University, Stanford, California 94305-4060, USA
${ }^{67}$ State University of New York, Albany, New York 12222, USA
${ }^{68}$ University of Tennessee, Knoxville, Tennessee 37996, USA
${ }^{69}$ University of Texas at Austin, Austin, Texas 78712, USA
${ }^{70}$ University of Texas at Dallas, Richardson, Texas 75083, USA
${ }^{71}$ Università di Torino, Dipartimento di Fisica Sperimentale and INFN, I-10125 Torino, Italy
${ }^{72}$ Università di Trieste, Dipartimento di Fisica and INFN, I-34127 Trieste, Italy
${ }^{73}$ Vanderbilt University, Nashville, Tennessee 37235, USA
${ }^{74}$ University of Victoria, Victoria, British Columbia, Canada V8W 3P6
${ }^{75}$ University of Wisconsin, Madison, Wisconsin 53706, USA
${ }^{76}$ Yale University, New Haven, Connecticut 06511, USA (Received 25 July 2003; published 18 February 2004)

We report a measurement of the inclusive charmless semileptonic branching fraction of B mesons in a sample of $89 \times 10^{6} B \bar{B}$ events recorded with the $B A B A R$ detector at the $Y(4 S)$ resonance. Events are selected by fully reconstructing the decay of one B meson and identifying a charged lepton from the decay of the other B meson. The number of signal events is extracted from the mass distribution of the hadronic system accompanying the lepton and is used to determine the ratio of branching fractions $\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right) / \mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})=[2.06 \pm 0.25($ stat $) \pm 0.23($ syst $) \pm 0.36$ (theo) $] \times 10^{-2}$. Using the measured branching fraction for inclusive semileptonic B decays, we find $\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)=[2.24 \pm$ 0.27 (stat) ± 0.26 (syst) ± 0.39 (theo) $] \times 10^{-3}$ and derive the Cabibbo-Kobayashi-Maskawa matrix element $\left|V_{u b}\right|=[4.62 \pm 0.28($ stat $) \pm 0.27$ (syst) ± 0.48 (theo) $] \times 10^{-3}$.

DOI: 10.1103/PhysRevLett.92.071802
PACS numbers: 13.20.He, 12.15.Hh

The element $\left|V_{u b}\right|$ of the Cabibbo-Kobayashi-Maskawa quark-mixing matrix [1] plays a critical role in testing the consistency of the standard model description of $C P$ violation. In this Letter, we present a determination of $\left|V_{u b}\right|$ from a measurement of inclusive charmless semileptonic decays $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ [2]. The analysis uses $\mathrm{Y}(4 S) \rightarrow B \bar{B}$ events in which one of the B meson decays hadronically and is fully reconstructed ($B_{\text {reco }}$) and the semileptonic decay of the recoiling \bar{B} meson is identified by the presence of an electron or muon. While this approach results in a low overall event selection efficiency, it allows for the determination of the momentum, charge, and flavor of the B mesons. We use the invariant mass m_{X} of the hadronic system to separate $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays from the dominant $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ background, which clusters above the D meson mass [3]. We achieve a higher signal purity and acceptance than previous analyses [4] and obtain smaller theoretical uncertainties. By measuring the fraction of charmless semileptonic decays $R_{u}=$ $\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right) / \mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})$, we minimize experimental uncertainties.

The measurement presented here is based on a sample of $89 \times 10^{6} B \bar{B}$ pairs collected near the $Y(4 S)$ resonance by the babar detector [5] at the PEP-II asymmetricenergy $e^{+} e^{-}$storage ring operating at SLAC.

We use Monte Carlo (MC) simulations of the BABAR detector based on GEANT [6] to optimize selection criteria and to determine signal efficiencies and background distributions. Charmless semileptonic $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays are simulated as a combination [see Fig. 1(a)] of resonant three-body decays ($X_{u}=\pi, \eta, \rho, \omega, \ldots$) [7] and decays to nonresonant hadronic final states X_{u} [8], for which the hadronization is performed by string fragmentation as implemented in the program JETSET [9]. The motion of the b quark inside the B meson is implemented with the shape function parametrization given in Ref. [8]. The simulation of the $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ background uses an HQET parametrization of form factors for $\bar{B} \rightarrow D^{*} \ell \bar{\nu}$ [10], and models for $\bar{B} \rightarrow D \pi \ell \bar{\nu}, D^{*} \pi \ell \bar{\nu}$ [11], and $\bar{B} \rightarrow D \ell \bar{\nu}$, $D^{* *} \ell \bar{\nu}[7]$.

To reconstruct a large sample of B mesons, hadronic decays $B_{\text {reco }} \rightarrow \bar{D} Y^{+}, \bar{D}^{*} Y^{+}$are selected. Here, the system

FIG. 1 (color online). $\quad m_{X}$ distributions for MC simulated $\bar{B} \rightarrow$ $X_{u} \ell \bar{\nu}$ events with a lepton of $p^{*}>1 \mathrm{GeV} / c$: (a) generated m_{X} for the two components of the signal model, and (b) reconstructed m_{X} before and after all other requirements.
Y^{+}consists of hadrons with a total charge of +1 , composed of $n_{1} \pi^{ \pm} n_{2} K^{ \pm} n_{3} K_{S}^{0} n_{4} \pi^{0}$, where $n_{1}+n_{2} \leq 5$, $n_{3} \leq 2$, and $n_{4} \leq 2$. We reconstruct $D^{*-} \rightarrow \bar{D}^{0} \pi^{-}$; $\bar{D}^{* 0} \rightarrow \bar{D}^{0} \pi^{0}, \quad \bar{D}^{0} \gamma ; \quad D^{-} \rightarrow K^{+} \pi^{-} \pi^{-}, \quad K^{+} \pi^{-} \pi^{-} \pi^{0}$, $K_{S}^{0} \pi^{-}, \quad K_{S}^{0} \pi^{-} \pi^{0}, \quad K_{S}^{0} \pi^{-} \pi^{-} \pi^{+} ; \quad$ and $\quad \bar{D}^{0} \rightarrow K^{+} \pi^{-}$, $K^{+} \pi^{-} \pi^{0}, K^{+} \pi^{-} \pi^{-} \pi^{+}, K_{S}^{0} \pi^{+} \pi^{-}$. The kinematic consistency of $B_{\text {reco }}$ candidates is checked with two variables, the beam energy-substituted mass $\mathrm{m}_{\mathrm{ES}}=\sqrt{s / 4-\vec{p}_{B}{ }^{2}}$ and the energy difference $\Delta E=E_{B}-\sqrt{s} / 2$. Here \sqrt{s} is the total energy in the $\Upsilon(4 S)$ center of mass frame, and \vec{p}_{B} and E_{B} denote the momentum and energy of the $B_{\text {reco }}$ candidate in the same frame. We require $\Delta E=0$ within 3 standard deviations as measured for each mode.
For each of the reconstructed B decay modes, the purity \mathcal{P} is estimated as the signal fraction in events with $m_{\mathrm{ES}}>5.27 \mathrm{GeV} / c^{2}$. The number of signal events is derived from a fit to the m_{ES} distribution that uses an empirical description [12] of the combinatorial background, together with a signal [13] peaked at the B meson mass [Fig. 2(a)]. We use 311 modes for which \mathcal{P} exceeds a decay mode dependent threshold in the range of 8% to 24%. In events with more than one reconstructed B decay, we select the decay mode with the highest purity. We reconstruct one B candidate in $0.3 \%(0.5 \%)$ of the $B^{0} \bar{B}^{0}$ ($B^{+} B^{-}$) events.
Semileptonic decays $\bar{B} \rightarrow X \ell \bar{\nu}$ of the \bar{B} recoiling against the $B_{\text {reco }}$ candidate are identified by an electron or muon with a minimum momentum of $p^{*}>1 \mathrm{GeV} / c$ in the \bar{B} rest frame. After this requirement, the purity of the event sample is 67%. For charged $B_{\text {reco }}$ candidates, we require the charge of the lepton to be consistent with a primary semileptonic \bar{B} decay. For neutral $B_{\text {reco }}$ candidates, both charge-flavor combinations are retained and the known average $B^{0}-\bar{B}^{0}$ mixing rate is used to determine the primary lepton yield. Electrons are identified [14] with 92% average efficiency and a hadron misidentification rate ranging between 0.05% and 0.1%. Muons are identified [5] with an efficiency ranging between 60% ($p^{*}>1 \mathrm{GeV} / c$) and 75% ($p^{*}>2 \mathrm{GeV} / c$) and hadron misidentification rate between 1% and 3%.

FIG. 2 (color online). Fit to the m_{ES} distributions for (a) the sample with a $p^{*}>1 \mathrm{GeV} / c$ lepton and (b) the sample after all requirements and with $m_{X}<1.55 \mathrm{GeV} / c^{2}$. The arrow indicates the lower limit of the signal region.

The hadronic system X in the decay $\bar{B} \rightarrow X \ell \bar{\nu}$ is reconstructed from charged tracks and energy depositions in the calorimeter that are not associated with the $B_{\text {reco }}$ candidate or the identified lepton. Care is taken to eliminate fake charged tracks, as well as low-energy beam-generated photons and energy depositions in the calorimeter from charged and neutral hadrons. The neutrino four-momentum p_{ν} is estimated from the missing momentum four-vector $p_{\text {miss }}=p_{Y(4 S)}-p_{B_{\text {reco }}}-p_{X}-$ p_{ℓ}, where all momenta are measured in the laboratory frame and $p_{Y(4 S)}$ refers to the $\Upsilon(4 S)$ meson momentum.

To select $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ candidates we require exactly one charged lepton with $p^{*}>1 \mathrm{GeV} / c$, charge conservation $\left(Q_{X}+Q_{\ell}+Q_{B_{\text {reco }}}=0\right)$, and a missing mass consistent with zero ($m_{\text {miss }}^{2}<0.5 \mathrm{GeV}^{2} / c^{4}$). These criteria suppress the dominant $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ decays, many of which contain additional neutrinos or an undetected K_{L}^{0} meson. The determination of the mass of the hadronic system is improved by a kinematic fit that imposes four-momentum conservation, the equality of the masses of the two B mesons, and forces $p_{\nu}^{2}=0$. The resulting m_{X} resolution is $350 \mathrm{MeV} / c^{2}$ on average. We suppress the $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}$ background by reconstructing only the π_{s}^{+}(from the $D^{*+} \rightarrow D^{0} \pi_{s}^{+}$decay) and the lepton: since the momentum of the π_{s}^{+}is almost collinear with the D^{*+} momentum in the laboratory frame, we can approximate the energy of the D^{*+} as $E_{D^{*+}} \simeq m_{D^{*+}} E_{\pi_{s}} / 145 \mathrm{MeV} / c^{2}$ and eliminate events with $\left(p_{B}-p_{D^{*+}}-p_{\ell}\right)^{2}>-3 \mathrm{GeV}^{2} / c^{4}$. We veto events with charged or neutral kaons (reconstructed as $K_{S}^{0} \rightarrow \pi^{+} \pi^{-}$) in the recoil \bar{B} to reduce the background from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ decays. The impact of the event selection on the m_{X} distribution is illustrated in Fig. 1(b). If all charged particles of the X system are reconstructed, the selection efficiency is $>50 \%$, but lost particles lower the efficiency significantly. Therefore, resonant states (e.g., the ρ meson) decaying into few particles are selected with higher efficiency.

We determine R_{u} from N_{u}, the observed number of $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ candidates with $m_{X}<1.55 \mathrm{GeV} / c^{2}$, and N_{sl}, the number of events with at least one charged lepton:

$$
R_{u}=\frac{\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)}{\mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})}=\frac{N_{u} /\left(\varepsilon_{s e l}^{u} \varepsilon_{m_{X}}^{u}\right)}{N_{\mathrm{sl}}} \times \frac{\varepsilon_{\ell}^{s l} \varepsilon_{\mathrm{reco}}^{s l}}{\varepsilon_{\ell}^{u} \varepsilon_{\mathrm{reco}}^{u}}
$$

Here $\varepsilon_{\text {sel }}^{u}=\left(34.2 \pm 0.6_{\text {stat }}\right) \%$ is the efficiency for selecting $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays once a $\bar{B} \rightarrow X \ell \bar{\nu}$ candidate has been identified, $\varepsilon_{m_{X}}^{u}=\left(73.3 \pm 0.9_{\text {stat }}\right) \%$ is the fraction of signal events with $m_{X}<1.55 \mathrm{GeV} / c^{2}, \varepsilon_{l}^{s l} / \varepsilon_{l}^{u}=0.887 \pm$ $0.008_{\text {stat }}$ corrects for the difference in the efficiency of the lepton momentum cut for $\bar{B} \rightarrow X \ell \bar{\nu}$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays, and $\varepsilon_{\text {reco }}^{\mathrm{sl}} / \varepsilon_{\text {reco }}^{u}=1.00 \pm 0.03_{\text {stat }}$ accounts for a possible efficiency difference in the $B_{\text {reco }}$ reconstruction in events with $\bar{B} \rightarrow X \ell \bar{\nu}$ and $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ decays.

We derive N_{sl} from a fit to the m_{ES} distribution shown in Fig. 2(a). The residual background in N_{sl} from misidentified leptons and semileptonic charm decays
amounts to $\left(6.8 \pm 0.1_{\text {stat }}\right) \%$ and is subtracted. We extract N_{u} from the m_{X} distribution by a minimum χ^{2} fit to the sum of three contributions: the signal, the background N_{c} from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$, and a background of $<1 \%$ from other sources (misidentified leptons, secondary τ, and charm decays). In each bin of the m_{X} distribution, the combinatorial $B_{\text {reco }}$ background for $\mathrm{m}_{\mathrm{ES}}>5.27$ is subtracted on the basis of a fit to the $m_{E S}$ distribution [Fig. 2(b)]. Figure 3(a) shows the fitted m_{X} distribution. To minimize the model dependence, the first bin covers the region up to $m_{X}^{c u t}=1.55 \mathrm{GeV} / c^{2}$. The fit reproduces the data well with $\chi^{2} /$ dof $=7.6 / 6$. Figure $3(\mathrm{~b})$ shows the m_{X} distribution after background subtraction with finer binning. Table I summarizes the results of fits with different sizes of the first m_{X} bin, for electrons and muons, for neutral and charged $B_{\text {reco }}$ candidates, and for different ranges of the $B_{\text {reco }}$ purity \mathcal{P}. The results are all consistent within the uncorrelated errors of signal and background samples.

We have performed extensive studies to determine the systematic uncertainties on R_{u}. To establish that the background from $\bar{B} \rightarrow X_{c} \ell \bar{\nu}$ events is adequately simulated we use previously excluded events with charged or neutral kaons as a control sample. The fraction of events removed by the application of selection criteria is very well described by the MC simulation for both the signal and the control samples. The relative systematic error due to uncertainties in the detection of photons is estimated to be 4.7% by varying the corrections applied to the MC simulation to match the data control samples. An error of 1.0% due to the simulation of showers generated by K_{L}^{0} interactions is estimated by removing the K_{L}^{0} energy depositions in the MC simulation. An error of 1.0% is due to the uncertainty in the track-finding efficiency. The errors due to identification of electrons, muons, and kaons are estimated to be $1.0 \%, 1.0 \%$, and 2.3%, respectively, by varying identification efficiencies by $\pm 2 \%, \pm 3 \%$, and $\pm 2 \%$ for $e^{ \pm}, \mu^{ \pm}$, and $K^{ \pm}$, and the misidentification rates by $\pm 15 \%$ for all particle types (see Ref. [14]). The uncertainty due to the $B_{\text {reco }}$ combinatorial background subtraction is 3.8%. It is estimated by changing the empirical m_{ES} signal function to a Gaussian distribution and by

FIG. 3 (color online). The m_{X} distribution for $\bar{B} \rightarrow X \ell \bar{\nu}$ candidates: (a) data (points) and fit components, and (b) data and signal MC after subtraction of the $b \rightarrow c \ell \nu$ and the "other" backgrounds.

TABLE I. Fit results for data subsamples.

Sample	N_{sl}	N_{u}	N_{c}	$R_{u}(\%)$
$m_{X}^{\text {cut }}=1.55 \mathrm{GeV} / c^{2}$	29982 ± 233	175 ± 21	90 ± 5	2.06 ± 0.25
$m_{X}^{\text {cut }}=1.40 \mathrm{GeV} / c^{2}$	29982 ± 233	143 ± 18	54 ± 3	1.89 ± 0.24
$m_{X}^{\text {cut }}=1.70 \mathrm{GeV} / c^{2}$	29982 ± 233	214 ± 26	145 ± 9	2.35 ± 0.28
neutral $B_{\text {reco }}$	10862 ± 133	76 ± 15	22 ± 3	2.53 ± 0.50
charged $B_{\text {reco }}$	19080 ± 191	100 ± 16	67 ± 4	1.82 ± 0.30
Electrons	17320 ± 173	101 ± 15	46 ± 3	2.27 ± 0.34
Muons	12622 ± 157	73 ± 15	41 ± 4	1.83 ± 0.37
$\mathcal{P}>80 \%$	4187 ± 68	20 ± 7	12 ± 1	1.68 ± 0.57
$50 \%<\mathcal{P}<80 \%$	12373 ± 141	68 ± 13	41 ± 3	1.94 ± 0.37
$\mathcal{P}<50 \%$	13144 ± 170	86 ± 15	34 ± 3	2.31 ± 0.41

varying the parameters within 1 standard deviation of the default values. The limited statistics of the simulated event samples adds an uncertainty of 4.5%. The choice of bins for $m_{X}>1.55 \mathrm{GeV} / c^{2}$ impacts the fit result at a level of 1.2%.

The uncertainties in the background modeling due to branching fraction measurements for $\bar{B} \rightarrow D \ell \bar{\nu}, D^{*} \ell \bar{\nu}, \ldots$ and for inclusive and exclusive D meson decays [15] contribute 4.4%. The error due to the hadronization in the $\bar{B} \rightarrow X_{u} \ell \bar{\nu}$ final state is estimated to be 3.0% by measuring R_{u} as a function of the charged and neutral particle multiplicities and performing the fit with only the nonresonant part of the signal model. We assign an additional 2.8% error to account for the uncertainties in the inclusive and exclusive branching fractions for charmless semileptonic B decays [15], plus 3.7% for the veto on strange particles. Here, we assume a 100% uncertainty in the $s \bar{s}$ contents for the resonant and 30% for the nonresonant component [16].

The efficiencies $\varepsilon_{\mathrm{sel}}^{u}$ and $\varepsilon_{m_{X}}^{u}$ are sensitive to the choice of the shape function parameters [8], which we assume to be directly related to the HQET parameters $\bar{\Lambda}$ and λ_{1}. We assess the uncertainties by varying within their errors $\bar{\Lambda}=0.48 \pm 0.12 \mathrm{GeV}$ and $\lambda_{1}=-0.30 \pm 0.11 \mathrm{GeV}^{2}$, values obtained from the results in Ref. [17] by removing terms proportional to $1 / m_{b}^{3}$ and α_{s}^{2} from the relation between the measured observables and $\bar{\Lambda}$ and λ_{1}. We have verified that significantly larger variations of these parameters are inconsistent with our measured m_{X} distribution. Taking into account the correlation of -0.8 between $\bar{\Lambda}$ and λ_{1}, we arrive at a theoretical error of 17.5%.

In summary, we have $R_{u}=(2.06 \pm 0.25 \pm 0.23 \pm$ $0.36) \times 10^{-2}$, where the errors are statistical, systematic (experimental plus signal and background modeling), and theoretical, respectively. Taking into account common errors we compute the double ratio $\left[\mathcal{B}\left(B^{-} \rightarrow X_{u} \ell \bar{\nu}\right) /\right.$ $\left.\mathcal{B}\left(B^{-} \rightarrow X \ell \bar{\nu}\right)\right]\left[\mathcal{B}\left(\bar{B}^{0} \rightarrow X \ell \bar{\nu}\right) / \mathcal{B}\left(\bar{B}^{0} \rightarrow X_{u} \ell \bar{\nu}\right)\right]=0.72 \pm$ $0.18_{\text {stat }} \pm 0.19_{\text {syst }}$, consistent with theoretical expectation. Combining R_{u} with the measured inclusive semileptonic branching fraction $\mathcal{B}(\bar{B} \rightarrow X \ell \bar{\nu})=\left(10.87 \pm 0.18_{\text {stat }} \pm\right.$ $\left.0.30_{\text {syst }}\right) \%$ [14], we obtain

$$
\mathcal{B}\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)=(2.24 \pm 0.27 \pm 0.26 \pm 0.39) \times 10^{-3}
$$

We combine this result with the average B lifetime of $\tau_{B}=1.608 \pm 0.012 \mathrm{ps}[15,18]$ and obtain [19]

$$
\left|V_{u b}\right|=(4.62 \pm 0.28 \pm 0.27 \pm 0.40 \pm 0.26) \times 10^{-3}
$$

The first error is statistical, the second systematic, the third gives the theoretical uncertainty in the signal efficiency and the extrapolation of R_{u} to the full m_{X} range, and the fourth is the uncertainty in the extraction of $\left|V_{u b}\right|$ from the total decay rate. No error is assigned to the assumption of parton-hadron duality.

This result is consistent with previous inclusive measurements [4], but is based on a sample with larger phase-space acceptance and higher purity. The results of exclusive measurements [20] tend to have a lower central value, but with a slightly larger error due to modeldependent form factor calculations. In the future, improved understanding of the signal composition and charm background will reduce the experimental errors, and this, together with independent measurements of $b \rightarrow s$ transitions and semileptonic B decays, is expected to constrain the theoretical uncertainties.

We are grateful for the excellent luminosity and machine conditions provided by our PEP-II colleagues, and for the substantial dedicated effort from the computing organizations that support $B A B A R$. The collaborating institutions wish to thank SLAC for its support and kind hospitality. This work is supported by DOE and NSF (USA), NSERC (Canada), IHEP (China), CEA and CNRS-IN2P3 (France), BMBF and DFG (Germany), INFN (Italy), FOM (The Netherlands), NFR (Norway), MIST (Russia), and PPARC (United Kingdom). Individuals have received support from the A. P. Sloan Foundation, Research Corporation, and Alexander von Humboldt Foundation.

[^0]*Also with IFIC, Instituto de Física Corpuscular, CSICUniversidad de Valencia, Valencia, Spain.
${ }^{\S}$ Deceased.
[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] Charge conjugation is implied throughout the Letter.
[3] V. D. Barger, C. S. Kim, and R. J. N. Phillips, Phys. Lett. B 251, 629 (1990); A. F. Falk, Z. Ligeti, and M. B. Wise, Phys. Lett. B 406, 225 (1997); I. I. Bigi, R. D. Dikeman, and N. Uraltsev, Eur. Phys. J. C 4, 453 (1998).
[4] ALEPH Collaboration, R. Barate et al., Eur. Phys. J. C 6, 555 (1999); L3 Collaboration, M. Acciarri et al., Phys. Lett. B 436, 174 (1998); DELPHI Collaboration, P. Abreu et al., Phys. Lett. B 478, 14 (2000); OPAL Collaboration, G. Abbiendi et al., Eur. Phys. J. C 21, 399 (2001); CLEO Collaboration, A. Bornheim et al., Phys. Rev. Lett. 88, 231803 (2002).
[5] BABAR Collaboration, B. Aubert et al., Nucl. Instrum. Methods Phys. Res. Sect. A 479, 1 (2002).
[6] geant4 Collaboration, S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res. Sect. A 506, 250 (2003).
[7] D. Scora and N. Isgur, Phys. Rev. D 52, 2783 (1995).
[8] F. De Fazio and M. Neubert, J. High Energy Phys. 06 (1999) 017.
[9] T. Sjöstrand, Comput. Phys. Commun. 82, 74 (1994).
[10] CLEO Collaboration, J. E. Duboscq et al., Phys. Rev. Lett. 76, 3898 (1996).
[11] J. L. Goity and W. Roberts, Phys. Rev. D 51, 3459 (1995).
[12] ARGUS Collaboration, H. Albrecht et al., Z. Phys. C 48, 543 (1990).
[13] Crystal Ball Collaboration, T. Skwarnicki, DESY F31-86-02.
[14] BABAR Collaboration, B. Aubert et al., Phys. Rev. D 67, 031101 (2003).
[15] Particle Data Group Collaboration, K. Hagiwara et al., Phys. Rev. D 66, 010001 (2002).
[16] TASSO Collaboration, M. Althoff et al., Z. Phys. C 27, 27 (1985).
[17] CLEO Collaboration, D. Cronin-Hennessy et al., Phys. Rev. Lett. 87, 251808 (2001).
[18] The impact of the uncertainty of the fraction of neutral and charged B mesons is negligible.
[19] We follow the prescription of [15], p. 708, based on N. Uraltsev, Int. J. Mod. Phys. A 14, 4641 (1999); A. H. Hoang, Z. Ligeti, and A.V. Manohar, Phys. Rev. D 59, 074017 (1999).
[20] BABAR Collaboration, B. Aubert et al., Phys. Rev. Lett. 90, 181801 (2003); CLEO Collaboration, S. B. Athar et al., Phys. Rev. D 68, 072003 (2003).

[^0]: *Also with Università di Perugia, Perugia, Italy.
 ${ }^{\dagger}$ Also with Università della Basilicata, Potenza, Italy.

