40 research outputs found

    Excited States of Nucleic Acids Probed by Proton Relaxation Dispersion NMR Spectroscopy

    Get PDF
    In this work an improved stable isotope labeling protocol for nucleic acids is introduced. The novel building blocks eliminate/minimize homonuclear 13C and 1H scalar couplings thus allowing proton relaxation dispersion (RD) experiments to report accurately on the chemical exchange of nucleic acids. Using site-specific 2H and 13C labeling, spin topologies are introduced into DNA and RNA that make 1H relaxation dispersion experiments applicable in a straightforward manner. The novel RNA/DNA building blocks were successfully incorporated into two nucleic acids. The A-site RNA was previously shown to undergo a two site exchange process in the micro- to millisecond time regime. Using proton relaxation dispersion experiments the exchange parameters determined earlier could be recapitulated, thus validating the proposed approach. We further investigated the dynamics of the cTAR DNA, a DNA transcript that is involved in the viral replication cycle of HIV-1. Again, an exchange process could be characterized and quantified. This shows the general applicablility of the novel labeling scheme for 1H RD experiments of nucleic acids

    Conformational Exchange Processes in Biological Systems: Detection by Solid-State NMR

    Get PDF
    International audienceWe review recent advances in methodologies to study microseconds-to-milliseconds exchange processes in biological molecules using magic-angle spinning solid-state nuclear magnetic resonance (MAS ssNMR) spectroscopy. The particularities of MAS ssNMR, as compared to solution-state NMR, are elucidated using numerical simulations and experimental data. These simulations reveal the potential of MAS NMR to provide detailed insight into short-lived conformations of biological molecules. Recent studies of conformational exchange dynamics in microcrystalline ubiquitin are discussed

    Studying Dynamics by Magic-Angle Spinning Solid-State NMR Spectroscopy: Principles and Applications to Biomolecules

    Get PDF
    International audienceMagic-angle spinning solid-state NMR spectroscopy is an important technique to study mo- lecular structure, dynamics and interactions, and is rapidly gaining importance in biomolecu- lar sciences. Here we provide an overview of experimental approaches to study molecular dy- namics by MAS solid-state NMR, with an emphasis on the underlying theoretical concepts and differences of MAS solid-state NMR compared to solution-state NMR. The theoretical foundations of nuclear spin relaxation are revisited, focusing on the particularities of spin re- laxation in solid samples under magic-angle spinning. We discuss the range of validity of Redfield theory, as well as the inherent multi-exponential behavior of relaxation in solids. Ex- perimental challenges for measuring relaxation parameters in MAS solid-state NMR and a few recently proposed relaxation approaches are discussed, which provide information about time scales and amplitudes of motions ranging from picoseconds to milliseconds. We also discuss the theoretical basis and experimental measurements of anisotropic interactions (chemical-shift anisotropies, dipolar and quadrupolar couplings), which give direct infor- mation about the amplitude of motions. The potential of combining relaxation data with such measurements of dynamically-averaged anisotropic interactions is discussed. Although the focus of this review is on the theoretical foundations of dynamics studies rather than their ap- plication, we close by discussing a small number of recent dynamics studies, where the dy- namic properties of proteins in crystals are compared to those in solution

    Four-α-Helix Bundle with Designed Anesthetic Binding Pockets. Part II: Halothane Effects on Structure and Dynamics

    Get PDF
    As a model of the protein targets for volatile anesthetics, the dimeric four-α-helix bundle, (Aα2-L1M/L38M)2, was designed to contain a long hydrophobic core, enclosed by four amphipathic α-helices, for specific anesthetic binding. The structural and dynamical analyses of (Aα2-L1M/L38M)2 in the absence of anesthetics (another study) showed a highly dynamic antiparallel dimer with an asymmetric arrangement of the four helices and a lateral accessing pathway from the aqueous phase to the hydrophobic core. In this study, we determined the high-resolution NMR structure of (Aα2-L1M/L38M)2 in the presence of halothane, a clinically used volatile anesthetic. The high-solution NMR structure, with a backbone root mean-square deviation of 1.72 Å (2JST), and the NMR binding measurements revealed that the primary halothane binding site is located between two side-chains of W15 from each monomer, different from the initially designed anesthetic binding sites. Hydrophobic interactions with residues A44 and L18 also contribute to stabilizing the bound halothane. Whereas halothane produces minor changes in the monomer structure, the quaternary arrangement of the dimer is shifted by about half a helical turn and twists relative to each other, which leads to the closure of the lateral access pathway to the hydrophobic core. Quantitative dynamics analyses, including Modelfree analysis of the relaxation data and the Carr-Purcell-Meiboom-Gill transverse relaxation dispersion measurements, suggest that the most profound anesthetic effect is the suppression of the conformational exchange both near and remote from the binding site. Our results revealed a novel mechanism of an induced fit between anesthetic molecule and its protein target, with the direct consequence of protein dynamics changing on a global rather than a local scale. This mechanism may be universal to anesthetic action on neuronal proteins

    Four-α-Helix Bundle with Designed Anesthetic Binding Pockets. Part I: Structural and Dynamical Analyses

    Get PDF
    The four-α-helix bundle mimics the transmembrane domain of the Cys-loop receptor family believed to be the protein target for general anesthetics. Using high resolution NMR, we solved the structure (Protein Data Bank ID: 2I7U) of a prototypical dimeric four-α-helix bundle, (Aα2-L1M/L38M)2, with designed specific binding pockets for volatile anesthetics. Two monomers of the helix-turn-helix motif form an antiparallel dimer as originally designed, but the high-resolution structure exhibits an asymmetric quaternary arrangement of the four helices. The two helices from the N-terminus to the linker (helices 1 and 1′) are associated with each other in the dimer by the side-chain ring stacking of F12 and W15 along the long hydrophobic core and by a nearly perfect stretch of hydrophobic interactions between the complementary pairs of L4, L11, L18, and L25, all of which are located at the heptad e position along the helix-helix dimer interface. In comparison, the axes of the two helices from the linker to the C-terminus (helices 2 and 2′) are wider apart from each other, creating a lateral access pathway around K47 from the aqueous phase to the center of the designed hydrophobic core. The site of the L38M mutation, which was previously shown to increase the halothane binding affinity by ∼3.5-fold, is not part of the hydrophobic core presumably involved in the anesthetic binding but shows an elevated transverse relaxation (R2) rate. Qualitative analysis of the protein dynamics by reduced spectral density mapping revealed exchange contributions to the relaxation at many residues in the helices. This observation was confirmed by the quantitative analysis using the Modelfree approach and by the NMR relaxation dispersion measurements. The NMR structures and Autodock analysis suggest that the pocket with the most favorable amphipathic property for anesthetic binding is located between the W15 side chains at the center of the dimeric hydrophobic core, with the possibility of two additional minor binding sites between the F12 and F52 ring stacks of each monomer. The high-resolution structure of the designed anesthetic-binding protein offers unprecedented atomistic details about possible sites for anesthetic-protein interactions that are essential to the understanding of molecular mechanisms of general anesthesia

    Appropriation of the MinD protein-interaction motif by the dimeric interface of the bacterial cell division regulator MinE

    No full text
    MinE is required for the dynamic oscillation of Min proteins that restricts formation of the cytokinetic septum to the midpoint of the cell in gram negative bacteria. Critical for this oscillation is MinD-binding by MinE to stimulate MinD ATP hydrolysis, a function that had been assigned to the first ∼30 residues in MinE. Previous models based on the structure of an autonomously folded dimeric C-terminal fragment suggested that the N-terminal domain is freely accessible for interactions with MinD. We report here the solution NMR structure of the full-length MinE dimer from Neisseria gonorrhoeae, with two parts of the N-terminal domain forming an integral part of the dimerization interface. Unexpectedly, solvent accessibility is highly restricted for residues that were previously hypothesized to directly interact with MinD. To delineate the true MinD-binding region, in vitro assays for MinE-stimulated MinD activity were performed. The relative MinD-binding affinities obtained for full-length and N-terminal peptides from MinE demonstrated that residues that are buried in the dimeric interface nonetheless participate in direct interactions with MinD. According to results from NMR spin relaxation experiments, access to these buried residues may be facilitated by the presence of conformational exchange. We suggest that this concealment of MinD-binding residues by the MinE dimeric interface provides a mechanism for prevention of nonspecific interactions, particularly with the lipid membrane, to allow the free diffusion of MinE that is critical for Min protein oscillation
    corecore