92 research outputs found

    Characterization of the Promoter, MxiE Box and 5â€Č UTR of Genes Controlled by the Activity of the Type III Secretion Apparatus in Shigella flexneri

    Get PDF
    Activation of the type III secretion apparatus (T3SA) of Shigella flexneri, upon contact of the bacteria with host cells, and its deregulation, as in ipaB mutants, specifically increases transcription of a set of effector-encoding genes controlled by MxiE, an activator of the AraC family, and IpgC, the chaperone of the IpaB and IpaC translocators. Thirteen genes carried by the virulence plasmid (ospB, ospC1, ospD2, ospD3, ospE1, ospE2, ospF, ospG, virA, ipaH1.4, ipaH4.5, ipaH7.8 and ipaH9.8) and five genes carried by the chromosome (ipaHa-e) are regulated by the T3SA activity. A conserved 17-bp MxiE box is present 5â€Č of most of these genes. To characterize the promoter activity of these MxiE box-containing regions, similar ∌67-bp DNA fragments encompassing the MxiE box of 14 MxiE-regulated genes were cloned 5â€Č of lacZ in a promoter probe plasmid; ÎČ-galactosidase activity detected in wild-type and ipaB strains harboring these plasmids indicated that most MxiE box-carrying regions contain a promoter regulated by the T3SA activity and that the relative strengths of these promoters cover an eight-fold range. The various MxiE boxes exhibiting up to three differences as compared to the MxiE box consensus sequence were introduced into the ipaH9.8 promoter without affecting its activity, suggesting that they are equally efficient in promoter activation. In contrast, all nucleotides conserved among MxiE boxes were found to be involved in MxiE-dependent promoter activity. In addition, we present evidence that the 5â€Č UTRs of four MxiE-regulated genes enhance expression of the downstream gene, presumably by preventing degradation of the mRNA, and the 5â€Č UTRs of two other genes carry an ancillary promoter

    Chronic kidney disease in the type 2 diabetic patients: prevalence and associated variables in a random sample of 2642 patients of a Mediterranean area

    Get PDF
    Background: Kidney disease is associated with an increased total mortality and cardiovascular morbimortality in the general population and in patients with Type 2 diabetes. The aim of this study is to determine the prevalence of kidney disease and different types of renal disease in patients with type 2 diabetes (T2DM). Methods: Cross-sectional study in a random sample of 2,642 T2DM patients cared for in primary care during 2007. Studied variables: demographic and clinical characteristics, pharmacological treatments and T2DM complications (diabetic foot, retinopathy, coronary heart disease and stroke). Variables of renal function were defined as follows: 1) Microalbuminuria: albumin excretion rate & 30 mg/g or 3.5 mg/mmol, 2) Macroalbuminuria: albumin excretion rate & 300 mg/g or 35 mg/mmol, 3) Kidney disease (KD): glomerular filtration rate according to Modification of Diet in Renal Disease < 60 ml/min/1.73 m2 and/or the presence of albuminuria, 4) Renal impairment (RI): glomerular filtration rate < 60 ml/min/1.73 m2, 5) Nonalbuminuric RI: glomerular filtration rate < 60 ml/min/1.73 m2 without albuminuria and, 5) Diabetic nephropathy (DN): macroalbuminuria or microalbuminuria plus diabetic retinopathy. Results: The prevalence of different types of renal disease in patients was: 34.1% KD, 22.9% RI, 19.5% albuminuria and 16.4% diabetic nephropathy (DN). The prevalence of albuminuria without RI (13.5%) and nonalbuminuric RI (14.7%) was similar. After adjusting per age, BMI, cholesterol, blood pressure and macrovascular disease, RI was significantly associated with the female gender (OR 2.20; CI 95% 1.86-2.59), microvascular disease (OR 2.14; CI 95% 1.8-2.54) and insulin treatment (OR 1.82; CI 95% 1.39-2.38), and inversely associated with HbA1c (OR 0.85 for every 1% increase; CI 95% 0.80-0.91). Albuminuria without RI was inversely associated with the female gender (OR 0.27; CI 95% 0.21-0.35), duration of diabetes (OR 0.94 per year; CI 95% 0.91-0.97) and directly associated with HbA1c (OR 1.19 for every 1% increase; CI 95% 1.09-1.3). Conclusions: One-third of the sample population in this study has KD. The presence or absence of albuminuria identifies two subgroups with different characteristics related to gender, the duration of diabetes and metabolic status of the patient. It is important to determine both albuminuria and GFR estimation to diagnose KD

    In vivo real-time imaging of TGF-Β-induced transcriptional activation of the RANK ligand gene promoter in intraosseous prostate cancer

    Full text link
    BACKGROUND Current animal models of prostate cancer (CaP) bone metastasis do not allow measurement of either tumor growth in bone over time or activation of gene promoters in intraosseous tumors. To develop these methods, we used bioluminescent imaging (BLI) to determine if expression of receptor activator of NF-ΚB ligand (RANKL), a pro-osteoclastogenic factor that promotes CaP bone metastases, is modulated by the bone matrix protein transforming growth factor-Β (TGF-Β) in vivo. METHODS C4-2B human CaP cells were treated with TGF-Β in vitro and RANKL mRNA and protein production were measured by polymerase chain reaction (PCR) and ELISA, respectively. Then C4-2B cells stably transfected with the RANKL promoter driving luciferase (lux) were injected intra-tibially into severe combined immundeficient (SCID) mice. Tumors were subjected to BLI every 2 weeks for 6 weeks and serum prostate specific antigen (PSA) was measured using ELISA. Vehicle (V), 1,25 dihydroxyvitamin D (VitD), or TGF-Β was administered to mice with established tumors and BLI to measure RANKL promoter activity was performed. Tumors were then subjected to immunohistochemistry for lux and assayed for RANKL mRNA levels. RESULTS TGF-Β induced RANKL protein and mRNA expression and activated the RANKL promoter activity in a dose-dependent manner in vitro. BLI demonstrated an increase in intraosseous tumor size over time, which correlated with serum PSA levels. Administration of TGF-Β and VitD to mice with established intraosseous tumors increased lux activity compared to V. Intratibial tumor RANKL mRNA expression paralleled the increased promoter activity. Immunohistochemistry confirmed the presence of lux in the intraosseous tumors. CONCLUSIONS These results demonstrate the ability to measure intraosseous tumor growth over time and gene promoter activation in an established intraosseous tumor in vivo and also demonstrate that TGF-Β induces activates the RANKL promoter. These results provide a novel method to explore the biology of CaP bone metastases. © 2004 Wiley-Liss, Inc.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/34765/1/20019_ftp.pd

    Gene Transfer to Chicks Using Lentiviral Vectors Administered via the Embryonic Chorioallantoic Membrane

    Get PDF
    The lack of affordable techniques for gene transfer in birds has inhibited the advancement of molecular studies in avian species. Here we demonstrate a new approach for introducing genes into chicken somatic tissues by administration of a lentiviral vector, derived from the feline immunodeficiency virus (FIV), into the chorioallantoic membrane (CAM) of chick embryos on embryonic day 11. The FIV-derived vectors carried yellow fluorescent protein (YFP) or recombinant alpha-melanocyte-stimulating hormone (α-MSH) genes, driven by the cytomegalovirus (CMV) promoter. Transgene expression, detected in chicks 2 days after hatch by quantitative real-time PCR, was mostly observed in the liver and spleen. Lower expression levels were also detected in the brain, kidney, heart and breast muscle. Immunofluorescence and flow cytometry analyses confirmed transgene expression in chick tissues at the protein level, demonstrating a transduction efficiency of ∌0.46% of liver cells. Integration of the viral vector into the chicken genome was demonstrated using genomic repetitive (CR1)-PCR amplification. Viability and stability of the transduced cells was confirmed using terminal deoxynucleotidyl transferase (dUTP) nick end labeling (TUNEL) assay, immunostaining with anti-proliferating cell nuclear antigen (anti-PCNA), and detection of transgene expression 51 days post transduction. Our approach led to only 9% drop in hatching efficiency compared to non-injected embryos, and all of the hatched chicks expressed the transgenes. We suggest that the transduction efficiency of FIV vectors combined with the accessibility of the CAM vasculature as a delivery route comprise a new powerful and practical approach for gene delivery into somatic tissues of chickens. Most relevant is the efficient transduction of the liver, which specializes in the production and secretion of proteins, thereby providing an optimal target for prolonged study of secreted hormones and peptides

    Sphingolipids as critical players in retinal physiology and pathology

    Get PDF
    Sphingolipids have emerged as bioactive lipids involved in the regulation of many physiological and pathological processes. In the retina, they have been established toparticipate in numerousprocesses, suchas neuronal survival and death, proliferation and migration of neuronal and vascular cells, inflammation, and neovascularization. Dysregulation of sphingolipids is therefore crucial in the onset and progression of retinal diseases. This review examines the involvement of sphingolipids in retinal physiology and diseases. Ceramide (Cer) has emerged as a common mediator of inflammation and death of neuronal and retinal pigment epithelium cells in animal models of retinopathies such as glaucoma, age-related macular degeneration (AMD), and retinitis pigmentosa. Sphingosine- 1-phosphate (S1P) has opposite roles, preventing photoreceptor and ganglion cell degeneration but also promoting inflammation, fibrosis, and neovascularization in AMD, glaucoma, and pro-fibrotic disorders. Alterations in Cer, S1P, and ceramide 1- phosphate may also contribute to uveitis. Notably, use of inhibitors that either prevent Cer increase or modulate S1P signaling, such as Myriocin, desipramine, and Fingolimod (FTY720), preserves neuronal viability and retinal function. These findings underscore the relevance of alterations in the sphingolipid metabolic network in the etiology of multiple retinopathies and highlight the potential of modulating their metabolism for the design of novel therapeutic approaches.Fil: Simon, Maria Victoria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Basu, Sandip K.. University of Tennessee; Estados UnidosFil: Qaladize, Bano. University of Tennessee; Estados UnidosFil: Grambergs, Richards. University of Tennessee; Estados UnidosFil: Rotstein, Nora Patricia. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Centro CientĂ­fico TecnolĂłgico Conicet - BahĂ­a Blanca. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca. Universidad Nacional del Sur. Instituto de Investigaciones BioquĂ­micas de BahĂ­a Blanca; Argentina. Universidad Nacional del Sur. Departamento de BiologĂ­a, BioquĂ­mica y Farmacia; ArgentinaFil: Mandal, Nawajes .A.. University of Tennessee; Estados Unido

    Sphingolipid accumulation causes mitochondrial dysregulation and cell death

    Get PDF
    Sphingolipids are structural components of cell membranes that have signaling roles to regulate many activities, including mitochondrial function and cell death. Sphingolipid metabolism is integrated with numerous metabolic networks, and dysregulated sphingolipid metabolism is associated with disease. Here, we describe a monogenic yeast model for sphingolipid accumulation. A csg2Δ mutant cannot readily metabolize and accumulates the complex sphingolipid inositol phosphorylceramide (IPC). In these cells, aberrant activation of Ras GTPase is IPC-dependent, and accompanied by increased mitochondrial reactive oxygen species (ROS) and reduced mitochondrial mass. Survival or death of csg2Δ cells depends on nutritional status. Abnormal Ras activation in csg2Δ cells is associated with impaired Snf1/AMPK protein kinase, a key regulator of energy homeostasis. csg2Δ cells are rescued from ROS production and death by overexpression of mitochondrial catalase Cta1, abrogation of Ras hyperactivity or genetic activation of Snf1/AMPK. These results suggest that sphingolipid dysregulation compromises metabolic integrity via Ras and Snf1/AMPK pathways

    “Pumping iron”—how macrophages handle iron at the systemic, microenvironmental, and cellular levels

    Get PDF

    Haemoglobin A1c variability is a strong, independent predictor of all-cause mortality in patients with type 2 diabetes

    Get PDF
    Aims: To evaluate various measures of haemoglobin (Hb) A1c variability, compared with average HbA1c, as independent predictors of mortality. Materials and Methods: The Renal Insufficiency And Cardiovascular Events Italian multicentre study enroled 15733 patients with type 2 diabetes from 19 diabetes clinics during 2006-2008. A total of 3 to 5 HbA1c measures, obtained during the 2-year period before enrolment, were available from 9 centres (8290 patients) and were used to calculate average HbA1c (HbA1c -MEAN) and HbA1c variability, measured as intra-individual standard deviation (HbA1c-SD), SD adjusted for the number of HbA1c assessments (HbA1c-AdjSD) and coefficient of variation (HbA1c-CV), that is, the HbA1c-SD to HbA1c-MEAN ratio. Vital status on October 31, 2015 was retrieved for 8252 patients (99.5%). Results: The measures of HbA1c variability increased according to quartiles of HbA1c-MEAN and vice versa. HbA1c-MEAN and measures of HbA1c variability were associated with all-cause mortality; however, the strength of association of HbA1c-MEAN was lower than that of HbA1c -SD, HbA1c-CV or HbA1c-AdjSD, and disappeared after adjusting for confounders and any of the measures of HbA1c variability. Mortality increased with quartiles of HbA1c-MEAN, HbA1c -SD, HbA1c-CV and HbA1c-AdjSD, but only the association with HbA1c variability measures remained after adjustment for confounders and/or each other measure. In the fully adjusted model, mortality risk was lower for HbA1c-SD below the median and higher for HbA1c-SD above the median, regardless of whether HbA1c-MEAN was below or above the median. Conclusions: HbA1c variability is a strong, independent predictor of all-cause mortality in type 2 diabetes and appears to be even more powerful than average HbA1c in predicting mortality
    • 

    corecore