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Abstract Macrophages reside in virtually every organ. First
arising during embryogenesis, macrophages replenish them-
selves in the adult through a combination of self-renewal and
influx of bone marrow-derived monocytes. As large phago-
cytic cells, macrophages participate in innate immunity while
contributing to tissue-specific homeostatic functions. Among
the key metabolic tasks are senescent red blood cell recycling,
free heme detoxification, and provision of iron for de novo
hemoglobin synthesis. While this systemic mechanism in-
volves the shuttling of iron between spleen, liver, and bone
marrow through the concerted function of defined macro-
phage populations, similar circuits appear to exist within the
microenvironment of other organs. The high turnover of iron
is the prerequisite for continuous erythropoiesis and tissue
integrity but challenges macrophages’ ability to maintain cel-
lular iron homeostasis and immune function.

This review provides a brief overview of systemic, micro-
environmental, and cellular aspects of macrophage iron

handling with a focus on exciting and unresolved questions
in the field.
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Fpn1 Ferroportin 1
Flvcr Feline leukemia virus subtype C receptor
FT Ferritin
FTH, FTL Ferritin heavy chain or light chain,

respectively
F4/80 (Murine macrophage marker) EGF-like

module-containing mucin-like hormone
receptor-like 1

GM-CSF Granulocyte-macrophage colony-
stimulating factor

Hb Hemoglobin
HFE Type I hemochromatosis gene
HIF Hypoxia-inducible factor
Hmox Heme oxygenase
HPX Hemopexin
HRE Hypoxia- responsive element
HRG1 Heme-regulated gene 1
ICH Intracranial hemorrhage
IFN Interferone
Ig Immunoglobulin
IL Interleukin
ION Iron oxide nanoparticle
IRE Iron responsive element
IRP Iron regulatory protein
KC Kupffer cell
Lcn2 Lipocalin 2
LcnR Lcn2 receptor
LDN LDN-193189 a BMP inhibitor that de-

creases hepcidin expression
LF Lactoferrin
LfR Lactoferrin receptor
MAC Magnetic activated cell (sorting)
M-CSF Macrophage colony-stimulating factor
MerTK MER proto-oncogene, tyrosine kinase
MHC-II Major histocompatibiliy complex class II
MPS Mononuclear phagocyte system
MRI Magnetic resonance imaging
NADPH
oxidase

Nicotinamide adenine dinucleotide phos-
phate-oxidase

NBIA Neurodegeneration with brain iron
accumulation

Nrf2 Nuclear factor (erythroid-derived 2)-like 2
NF-IL6 Nuclear factor interleukin 6
NF-κB Nuclear factor kappa B
NLPR3 NACHT, LRR, and PYD domains-

containing protein 3 AKA cryopyrin
Nramp1 Natural resistance-associated macrophage

protein 1
PHD Prolyl hydroxylase domain proteins
PGC-1ß Peroxisome proliferator-activated recep-

tor-gamma coactivator 1 beta

PU.1 An E26 transformation-specific transcrip-
tion factor encoded by the SPI1 gene

RBC Red blood cell
Rev-ErbAα, Rev-
ErbBα

(Nuclear receptors) NR1D1 and NR1D2,
for nuclear receptor subfamily 1, group D,
member 1 or member 2, respectively

RPM Red pulp macrophage
ROS Reactive oxygen species
Sall1 BSpalt-like^-1
Scara5 Scavenger receptor class A member 5
SIRPα Signal regulatory protein alpha
SpiC An E26 transformation-specific transcrip-

tion factor of the Spi subfamily
SR-A1 Scavenger receptor class A type 1
Steap Six-transmembrane epithelial antigen of

prostate
TF Transferrin
Tfr1 Transferrin receptor 1
Tim T-cell immunoglobulin- and

mucin- domain-containing molecule
TLR4 Toll-like receptor 4
VCAM1 Vascular cell adhesion molecule 1

Systemic aspects of iron recycling

The mononuclear phagocyte system (MPS) encompasses
monocytes and macrophages residing throughout the body
[9, 82, 85]. A central role of this multifunctional system
beyond immunity and tissue repair is to control the body’s
metabolic needs for iron. The maintenance of iron homeo-
stasis at the systemic level requires iron recycling (Fig. 1),
much of which is contained in senescent red blood cells
(RBC). This is a prerequisite for sufficient de novo syn-
thesis of hemoglobin (Hb) in the bone marrow (BM), a
process which consumes as much as 20–25 mg of iron per
day [78, 179]. The capacity of the small intestine to absorb
dietary iron, in comparison to the daily needs of iron, is rather
low; in humans under steady-state conditions, 1–2 mg of iron
is absorbed from the diet in the duodenum and upper jejunum.
Thus, dietary iron absorption only compensates for obligatory
losses of the metal, mainly through desquamation of the
epidermis and the intestinal epithelium, and menstrual bleed-
ing [168].

Intestinal iron absorption is regulated, to a large extent, at the
basolateral membrane of enterocytes [59, 248]. It is at this loca-
tion that ferroportin-1 (Fpn1; AKA solute carrier family 40mem-
ber 1) fulfills its function as the sole cellular efflux protein for
ionic iron, shuttling apically absorbed iron to the circulation,
where it is oxidized and loaded onto transferrin (TF) [173]. The
presence of Fpn1 in the absorptive epithelium is under negative
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Fig. 1 a In steady state, 20–25 mg/day of iron is needed to generate new
red blood cells (RBC) in the bone marrow (depicted as vertebral body).
The RBC of an adult human form the body’s largest iron pool (1500–
2500 mg contained in hemoglobin [Hb]). After an average lifetime of
120 days, aged RBC (aRBC) are trapped in the spleen, recognized by
red pulp macrophages (RPM), and eliminated. Their Hb is recycled, and
ferroportin (Fpn)-1 exports iron into sinusoidal capillaries where it is
loaded onto transferrin (TF). TF-bound iron is utilized by developing
erythroblasts (EB) via TF receptor (Tfr)-1. Erythroid island
macrophages assist in iron uptake and differentiation. Plasma iron
content is sensed by hepatocytes, presumably via Tfr1 and other iron-
sensitive molecules. They affect the transcriptional activation of hepcidin,
the major iron hormone, in hepatocytes. Hepcidin acts as negative
feedback regulator of iron influx by targeting Fpn1 resulting in
degradation of the latter and thus reduction of iron transfer from the diet

and macrophages to the plasma. Kupffer cells (KC) inhibit hepcidin
expression by hepatocytes and also engage in erythrophagocytosis. b
The lifespan of RBC can be reduced as a consequence of
autoinflammation and subsequent hemolysis, radical formation and
toxin activity or based on intrinsic structural or metabolic defects. The
rapid accumulation of damaged RBC (dRBC) may overwhelm the
spleen’s clearance capacity. In such a scenario, KC engulf dRBC which
may result in cell death. As back-up system,monocytes are recruited from
the bone marrow and possibly spleen via chemokines CCL2 and CCL3
and their receptor CCR2. These monocytes encounter a niche in the liver
and differentiate into KC-like cells that express Fpn1 which is induced by
several mechanisms including the growth factor macrophage colony-
stimulating factor (M-CSF). Fpn1-mediated iron export sustains
increased erythropoiesis in the bone marrow to compensate for losses
by RBC damage
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control of hepcidin, which is mainly secreted by hepatocytes in
response to high circulating and tissue amounts of iron or upon
stimulation by inflammatory mediators [171, 229]. This nega-
tive feedback loop exists because of the Janus-faced nature of
iron. Iron forms the central cation of hemoglobin, other heme-
containing proteins (such as myoglobin and cytochrome P450
enzymes including the mitochondrial electron transport chain),
and iron-sulfur cluster-containing enzymes found in most cells
[179, 180]. Free labile forms of iron and heme, however, are
potentially toxic and threaten tissue integrity due to their pro-
oxidative properties which are largely based on the capacity of
iron to non-enzymatically boost reactive oxygen species (ROS)
production via Fenton chemistry [89, 119].

Given its essential role in metabolism and cellular process-
es such as mitochondrial respiration, an efficient and tightly
controlled pathway for maintaining iron in the bodymust exist
and likely depends on factors controlling the recognition, up-
take, and degradation of erythrocytes by macrophages [113].
In steady-state conditions, RBC recycling mainly takes place
in the spleen [48, 213]. In conditions of excessive RBC dam-
age, liver macrophages (Kupffer cells, henceforward abbrevi-
ated as KC) dominate RBC clearance (as detailed in BLiver—
the iron regulatory organ^ section) [231].

During massive hemolysis, circulating hemoglobin (Hb)
and heme are bound by hemopexin (HPX) and haptoglobin,
respectively, to avoid intravasal radical formation via the cat-
alytic action of iron [203, 235, 244]. However, when the ca-
pacity of red pulp macrophages (the iron-recycling macro-
phage population in the spleen, henceforward abbreviated as
RPM) and KC is overwhelmed, the cells die, presumably by a
specific form of cell death called ferroptosis that is induced by
iron-mediated oxidative stress and lipid peroxidation [54]. To
compensate, blood-derived monocytes fill the partial niche
after KC loss and differentiate into a transient macrophage
population that has a unique phenotype including the high expres-
sion of the CC-chemokine receptor 2 (CCR2) [231]. Indeed,
monocyte recruitment from the BM to the liver is mediated by a
liver-specific, KC-derived CC-chemokine gradient of CCL2 and
CCL3 that attracts CCR2+ CCR5+ monocytes to the organ. As a
consequence, the BM enhances myelopoiesis and releases addi-
tional monocytes to the circulation to meet the increased demand
(Fig. 1b). This chemokine-mediated monocyte recruitment is es-
sential because if disrupted pharmacologically, damaged RBC ac-
cumulate in glomerular capillaries resulting in renal failure [231].
Comparable phenomena of KC death, although necroptotic by
nature, and replacement of KCs from BM-derived monocytes
have been reported in Listeria monocytogenes infection [21]
raising the possibility that the mechanism is a general stress
response that can be fine tuned according to whether the initial
stressor is endogenous (e.g., RBC, heme) or exogenous (e.g., a
pathogen).

In theory, additional mechanisms bywhichmacrophagesmay
influence systemic iron homeostasis (other than its recycling)

include control of dietary iron absorption or excretion. It is gen-
erally thought that no regulated pathway of iron excretion exists
in themammalian organism.Duodenal iron absorption, however,
appears to rely on macrophages, albeit indirectly via modulating
hepcidin production by hepatocytes (see BLiver—the iron regu-
latory organ^ section). To the best of our knowledge, no data
exist on whether lamina propria macrophages in the small intes-
tine affect absorptive enterocyte iron transporter expression or
function, although this is possible given that macrophages pro-
duce small amounts of hepcidin in response to inflammatory
stimuli [185, 227]. However, one might speculate that intestinal
infection might alter absorption by shifting intestinal stem cell
differentiation towards non-absorptive progeny such as Paneth or
Tuft cells and by promoting recruitment of inflammatory macro-
phages [39, 64]. Although hypothetical, such amechanismmight
be initiated by myeloid cells since lamina propria macrophages
and dendritic cells (DCs) will be one of the first cell types to
engage in host response to invasive pathogens [125].

Erythrophagocytosis

The physiologic senescence of RBC is associated with me-
chanical and biochemical alterations of their membrane such
as reduced flexibility, exposure of phosphatidylserine on their
surface, and clustering of band 3 followed by binding of anti-
bodies and complement [97, 237]. The microanatomy of
splenic sinusoidal capillaries prevents the unhindered passage
of these senescent RBC. Macrophages, however, recognize
cell surface markers of senescence via scavenger receptors
such as Tim4, SR-AI, and CD36 [114, 155, 156, 202, 251].
Damaged and aged RBC are engulfed by RPM (flow
cytometrically phenotyped as F4/80low CD11blow Fpn1+)
and phagocytosed. The molecular machinery of RBC
recycling is relatively well described, and its function is es-
sential to tissue integrity given the pro-oxidative capacity of
free labile heme. This capacity is potentiated by the extraor-
dinarily high number of about 1.2 × 109 heme moieties
contained within a single RBC and the fact that RBC are the
body’s most abundant cell type comprising approximately
84% of our cells [118, 208]. It thus appears conceivable that
a stand-by mechanism for heme detoxification exists: The
molecular switch to turn on the protective pathways within
cells is the transcriptional repressor Btb and Cnc homology
1 (Bach1). Bach1 is a basic leucine zipper (bZip) transcrip-
tional factor which has a high affinity for heme, enabling it to
act as a sensor of cellular heme levels. Rising heme levels
induce Bach1 proteosomal degradation, releasing the brake
on two types of down-stream pathways. First, the competitive
inhibition of nuclear factor (erythroid-derived 2)-like 2 (Nrf2)
binding to antioxidant-response elements (ARE) ceases for
genes containing AREs [51, 145, 221], such as ferritin h chain
(FTH), FPN1, heme-regulated gene-1 (HRG1), and heme ox-
ygenase (Hmox1) [102, 190]. Second, the degradation of
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Bach1 induces expression of the transcription factor (an E26
transformation-specific transcription factor of the Spi subfam-
ily) SpiC independently of Nrf2 [116, 211]. SpiC is a tran-
scription factor that is predominately expressed by RPM and
erythroid island macrophages (EIM) in the BM [88]. It is
essential to the development of these cell types as Spic−/−

mice have drastically reduced numbers of RPM and EIM
which lead to reduced proerythroblast numbers in the steady
state, supporting the idea that iron recycling is essential to
sustain iron-sufficient erythropoiesis [58].

Hypoxia-inducible factors (HIFs) provide an alternative
mechanism to adjust heme iron recycling by macrophages
to the degree of anemia and the need for de novo Hb
synthesis. Anemia inevitably results in low oxygen con-
centrations in the tissue microenvironment which counter-
act HIF degradation in the proteasome so that these tran-
scription factors become available to trans-activate genes
containing hypoxia-responsive elements (HREs). HIF-
HRE interaction in response to hypoxia thus stimulates
iron release from macrophages by inducing Hmox1 and
Fpn1 as well as one of its associated ferroxidases, cerulo-
plasmin [37, 63, 200]. Although many genes involved in
heme iron recycling are thus HIF-inducible, HIF-1α and
HIF-2α in macrophages are dispensable for heme iron
recycling under hemolytic stress [147]. This suggests that
HIF isoforms fulfill redundant functions in macrophages
or that they are not essential because Bach1-controlled
pathways are dominant.

Bach1 is not the only cellular sensor for heme. Intracellular
free heme can also induce signaling via nuclear receptors Rev-
Erbα and Rev-Erbß [29, 132, 187]. Furthermore, the
inflammasome activation via cryopyrin (AKANLRP3) is sen-
sitive to surplus intracellular heme while extracellular free
heme can activate Toll-like receptor 4 (TLR4), supporting
the idea that free heme is an endogenous danger signal [60,
65, 66, 131]. Given its inherent potential toxicity, the majority
of free intracellular heme is promptly degraded by Hmox.
Hmox1, which itself is induced via Nrf2 in response to heme
or other oxidative stressors, is widely expressed in the MPS.
Hmox2, by contrast, is a constitutive isoform carrying impor-
tant functions in the nervous and reproductive systems [89].
Both Hmox isoenzymes cleave heme’s protoporphyrin ring
which yields bilirubin, carbon monoxide, and iron in equimo-
lar amounts. The iron released during this process is either
stored within ferritin (FT), incorporated into iron-containing
proteins, or shuttled to the extracellular space via Fpn1.
Outside the cell, ferrous iron needs to be oxidized to its ferric
form by cell membrane-anchored hephaestin or plasmatic ce-
ruloplasmin. Thereafter, ferric iron can be bound to transferrin
(TF) and the bulk of it will re-enter the BM and be utilized in
RBC production. Therefore, the incorporation of iron into
protoporphyrin IX to form a new heme moiety closes the
circle of heme iron recycling.

Local circuits

Liver—the iron regulatory organ

The liver acts as central orchestrator of ironmetabolism through
various mechanisms. First, among many other carrier proteins,
hepatocytes synthesize TF to cargo ferric iron in the circulation
and keep free ionic iron at minimal levels. Second, even small
fluctuations in plasma iron such as those originating from a
single dose of an iron supplement are sensed by the liver and
counterbalanced by an accordant change in hepcidin expression
[158]. An increase in plasma iron stimulates hepcidin secretion
which dampens macrophage iron egress and to a lesser extent
duodenal iron absorption following its interaction with Fpn1.
Conversely, KC appear to dampen hepatocytes’ hepcidin ex-
pression since KC depletion with clodronate liposomes aug-
ments hepcidin and leads to a dramatic drop in plasma iron
levels according to one study [228]. However, other data sug-
gest that KC are dispensable for the induction of hepcidin in
response to iron or inflammation. Studies in Il-6−/− mice con-
firmed that IL-6 is an important mediator to induce hepcidin in
response to TLR4 ligation but KC depletion did not alter
hepcidin induction in this model [137]. While the physiological
role of these observations therefore remains controversial [137,
157], it is tempting to speculate that KCmay fine-tune hepcidin
production or that a liver-intrinsic circuit reports on the amount
of iron acquired by KC through erythrophagocytosis. A diph-
theria toxin-mediated depletion of C-type lectin domain family
4 member F (Clec4F), a marker specific to KC, might help to
test this hypothesis [207].

Hepatocytes are also central effectors of the acute phase reac-
tion that is induced during extracellular hemolysis and thereby
produce haptoglobin and HPX which are rapidly consumed.
Haptoglobin and HPX scavenge free Hb and heme, respectively,
and are ligands to CD163 and CD91 which are primarily present
on macrophages including KC [100, 120]. The destruction of
large amounts of RBC in the circulation further activates F4/
80+ CD11blow KC to respond with erythrophagocytosis. KCs
have a limited tolerance to iron toxicity and die in the setting of
massive hemolysis as discussed above [231].

Erythrophagocytosis augments Fpn1 and FTexpression by
F4/80+ CD11b+ liver-infiltrating monocytes that differentiate
to macrophages which transiently replace dying KC. In the
liver, M-CSF stimulates Fpn1 expression while GM-CSF,
which is produced in the spleen, represses Fpn1 [231]. Upon
differentiation, these F4/80+ CD11b+ Fpn1+ monocytes also
express SpiC and bone morphogenetic protein 6 (Bmp6).
While SpiC may program them to recycle iron efficiently,
the iron-inducible factor, Bmp6, may have paracrine effects
on adjacent hepatocytes by instructing them to increase
hepcidin expression, thereby lowering circulating iron levels.
However, the major production of Bmp6 in the liver is by yet
another liver-resident cell type, sinusoidal endothelial cells
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[28]. Since Bmp6 stimulates both hepcidin production by he-
patocytes [6] and transcriptionally regulates macrophage ef-
fector functions [123], it may broadly orchestrate the interplay
between various liver-resident cell types. Intriguingly, there
might be direct transfer of iron from macrophages to hepato-
cytes after erythrophagocytosis because iron contained in
damaged RBC first accumulates in myeloid cells but is dis-
tributed to hepatocytes within 1 week. The underlying mech-
anism remains elusive but may employ Fpn1 as well as alter-
native routes of iron trafficking via FT secretion and uptake
via FT receptors [34, 90, 130]. In fact, it has been shown that
macrophages are the major source of plasma FT [40].

The importance of Fpn1 for liver cell functions is evident
from the clinical manifestations of ferroportin disease (type 4
hemochromatosis) which is caused by various mutations in the
SLC40A1 (encoding FPN1) gene [148, 189]. Classical loss-of-
function mutations of SLC40A1 result in reduced iron transport
capacity that are attributable to an amino acid exchange in the
iron pore or to protein misfolding of FPN1. The mutations
mainly manifest in the MPS (i.e., by iron retention in KC)
because the high iron turnover of macrophages cannot be met
by 50% of functional FPN1 molecules transcribed from the
intact SLC40A1 allele [58, 149]. However, non-classical Fpn1
mutations SLC40A1 are gain-of-function mutations that cause
hepcidin resistance of the FPN1 protein. In this case, hepcidin
cannot bind to FPN1 and does not cause its internalization and
lysosomal degradation. Consequently, a phenotype of function-
al hepcidin deficiency that is similar to classical type I hemo-
chromatosis with hepatocellular iron overload occurs [2, 188,
246]. In summary, hepatocytes, KC, and endothelial cells co-
operate to maintain the body’s iron homeostasis and we are
beginning to decipher the signals that coordinate the function
of these and other liver-resident cell types.

Spleen—iron recycler in steady state

Similar to the liver, several cell populations co-exist in the
spleen. RPM ingest erythrocytes in steady state, eliminating
more than 2 × 106 of these cells per second in a healthy adult
(as deduced from the RBC production rate assuming equilib-
rium). This enormous task has implications for the spleen’s
immune function. For instance, CD47 is a Bdo not eat me^
signal expressed by many cell types including RBC [178].
CD47 is recognized by signal regulatory protein alpha
(SIRPα) on macrophages which then ignore the intact RBC.
In contrast, CD47-deficient RBC are rapidly cleared from the
circulation. Aging RBC partially lose surface expression of
CD47 [109]. Given that CD47 specifically and substantially
inhibits FcγR-mediated phagocytosis of IgG-carrying RBC,
the CD47 reduction with senescence is thought to enable the
elimination of aged RBC. RPM are not the only ones that
recognize CD47, though. The absence of CD47 on RBC is
also sensed by splenic CD4+ DCs. Lacking the inhibitory

input of CD47-SIRPα interaction, they are licensed to aug-
ment MHC-II, CD86, and CCR7 and start their migration to
the T cell zone to stimulate T cells [253]. However, it remains
unclear whether or not erythrophagocytosis by RPM and
CD4+ DC activation affect each other.

In response to increased demand for erythrophagocytosis,
the spleen also produces abundant amount of GM-CSF, which
inhibits Fpn1 expression in macrophages [231]. It has thus
been proposed that the emergency mechanism of iron
recycling is less efficient under stress conditions in the spleen.
This fundamental difference between spleen and liver may be
based on the fact that iron alters the binding affinity of anti-
bodies: Both ferrous iron and free heme interact with IgG to
enlarge the antibody repertoire. Specifically, heme-IgG com-
plexes have a broader ability to recognize bacterial antigens
and kill intact bacteria. In addition, Fe-IgG complexes protect
from E. coli sepsis suggesting another possible link between
erythrophagocytosis and adaptive immunity [52, 53]. Another
aspect underlying reduced erythrophagocytosis in the spleen
under stress conditions including infections can be attributed
to the fact that iron loading of macrophages dampens their
innate anti-microbial effector function directed against invad-
ing pathogens [212]. While the function of RPM in continu-
ous erythrophagocytosis is clear, we are lacking a comprehen-
sive understanding of how iron recycling in the splenic red
pulp and the organ’s immune functions affect each other.

Muscle—venue for a closed circuit for iron recycling
following myolysis?

A mechanism comparable to hemolysis-induced RBC recycling
in the liver has recently been described in the skeletal muscle in
the context of rhabdomyolysis. Rhabdomyolysis, the death of the
skeletal muscle, poses a fundamental risk for the body’s integrity
because myoglobin, the oxygen transfer protein, is a heme-
containing protein that can contribute to iron-mediated radical
damage. Additionally, myoglobin’s molecular weight of
17 kDa allows it to penetrate the glomerular filtration apparatus
of the kidney which operates at a cutoff of 30–50 kDa so that in
rhabdomyolysis large quantities of myoglobin end up in the renal
tubuli where they can cause acute kidney injury (crush kidney).
Therefore, the skeletal muscle is equipped with a machinery that
protects from free myoglobin/heme-mediated damage. This in-
cludes HPX formation and myeloid cell recruitment.
Macrophages infiltrating the injured skeletal muscle induce the
expression of Hmox1, CD163, and FT to contain and detoxify
heme [41]. It has further been suggested that the induction of
Hmox1 and Fpn1 by the infiltrating monocytes allows for local
heme iron recycling so that the regenerating myoblasts have
enough iron for de novo myoglobin synthesis. It will be interest-
ing to see whether myeloid cells also affect iron metabolism of
skeletal muscle during more physiological conditions such as
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growth and whether there are perturbations in myopathies other
than rhabdomyolysis.

Heart—an organ exquisitely sensitive to iron toxicity

The presence of a local mechanism of iron recycling bymono-
cytes in skeletal muscle raises the question whether similar
circuits exist throughout the body. Given that myocardial is-
chemia induces substantial recruitment of monocytes from
blood, BM, and spleen to the site of damage and its vicinity,
these cells may also encounter myoglobin molecules.
However, the adult myocardium lacks regenerative potential
suggesting that iron handling by monocytes infiltrating the
injured heart muscle may be different from that of monocytes
infiltrating damaged skeletal muscle [92]. Alternatively, it is
possible that cardiac fibroblasts use iron recycled by mono-
cytes for proliferation and collagen synthesis [80].

Resident cardiac macrophages are one of the major non-
parenchymal cells of the heart [223]. They have well-
established roles in the pathogenesis of ischemic myocardial
injury as well as in tissue repair thereafter [93, 96]. In addition,
their roles in the metabolic activity of the adjacent myocardi-
um and in chronic cardiac diseases such as congestive heart
failure are increasingly appreciated [199], and macrophages
may either tailor the delivery of iron to the myocardium or
accumulate and detoxify heme which may mainly arise from
tissue injury [161, 214].

The susceptibility of the heart to pathological iron loading is
well reflected in Friedreich’s ataxia, an autosomal recessive dis-
ease with a complex neurological phenotype that inevitably af-
fects the heart; congestive heart failure is the most frequent cause
of death in these patients. Frataxin localizes to mitochondria
where it fulfills functions in the assembly of iron-sulfur clusters
acting as the mitochondrial iron chaperone [24].

Given the extraordinary energy generation by mitochon-
dria in cardiomyocytes, it is likely that the cardiac phenotype
of Friedreich’s ataxia is primarily a parenchymal one that oc-
curs as a consequence of mitochondrial heme accumulation
due to defective iron utilization [98]. However, it is interesting
to note that the number of CD68+ macrophages is increased in
the myocardium of Friedreich ataxia patients and that these
cells contain higher amounts of FT. It has been proposed that
Fpn1-mediated iron export from cardiac macrophages may be
impaired in Friedreich’s disease [115].

Since cardiomyocytes are exquisitely sensitive to iron over-
load and iron overload disorders commonly affect the heart, a
better understanding of iron handling by resident or recruited
myeloid cells in the cardiac microenvironment may open new
therapeutic options. However, cardiac macrophages are al-
ready an established diagnostic target of contrast material in
magnetic resonance imaging (MRI). Specifically, nanoscale
iron-containing compounds (IONs, for iron oxide nanoparti-
cles) have been designed to being selectively taken up by

macrophages [183]. After exposure to magnetic fields, these
compounds cause a signal alteration which is affected by pro-
cesses such as ischemia or inflammation secondary to macro-
phage activation.

Blood vessels—arterial macrophage iron overload
as hallmark of atherosclerosis

Iron accumulation in arterial macrophages has long been sug-
gested to contribute to the pathogenesis of atherosclerosis
[220]. A comprehensive pathophysiological understanding
of this observation is still pending. However, it is well docu-
mented that arterial macrophages, typically identified by
CD68 histochemistry on histologic sections within atheroscle-
rotic lesions, contain larger amounts of FT than those outside
plaques [129, 256]. Accordingly, high levels of plasma FT are
an independent risk factor for the severity of carotid artery
disease [110, 111], and high circulating iron levels have been
linked to impaired endothelial function and intima media
thickening, two early predictors of atherosclerosis [76].
Published evidence suggests that microhemorrhages occur in
the vasa vasora of the arterial wall and that macrophages re-
move RBC debris by phagocytosis, which increases their iron
levels without overt activation [22, 87, 201]. In addition, ath-
erosclerosis is a lipid-driven chronic inflammatory disorder
closely linked to the metabolic syndrome, and higher plasma
hepcidin levels are associated with vascular damage as docu-
mented in a small but well-conducted ultrasonographic pilot
study [238]. That said, hepcidin levels do not predict an in-
creased risk for myocardial infarction or stroke in a
population-based study [182].

The specific role of macrophage iron efflux in the progres-
sion of atherosclerosis is controversial. While the presence of
the hypofunctional flatiron mutation of Slc40a1 in apolipopro-
tein E-deficient (Apoe−/−) mice did not affect atherosclerosis
[107], systemic administration of the hepcidin-antagonist
LDN-193189 (LDN), which inhibits Bmp-induced hepcidin
transcription [10, 27, 230], blocked the differentiation of mac-
rophages into foam cells. This latter effect was based on en-
hanced expression of ATB-binding cassette transporters
ABCA1 and ABCG1, two major cholesterol efflux proteins,
and on increased cholesterol transfer to apolipoprotein A1
(ApoA1) [198]. Importantly, LDN treatment also reduced ath-
erosclerotic lesion size, suggesting that modulating systemic
iron metabolism affects atherosclerosis progression. A more
selective approach that only targets arterial wall macrophages
may be warranted as the metabolic syndrome can be associated
not only with functional iron deficiency (predicted to be ame-
liorated by hepcidin antagonism) but also with iron overload
(predicted to be aggravated by systemic hepcidin inhibition).

The dysregulation of iron metabolism in arterial macro-
phages is not limited to the hepcidin-Fpn1 axis. In humans,
expression of the ferroxidases hephaestin and ceruloplasmin
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was reduced in atherosclerosis [105]. Accordingly, there is
in vitro evidence that iron-induced ROS contribute to LDL
oxidation and that oxidized LDL particles induce FTH and
hepcidin transcription in macrophages which may reduce
Fpn1 levels and thus retain cellular iron [144].

In conclusion, evidence is accumulating for a cross-talk
between the regulators of iron and cholesterol metabolism
both systemically and locally in the microenvironment of the
atherosclerotic plaque. However, due to a lack of mechanistic
insight, we are not able yet to therapeutically target one me-
tabolite or metabolic pathway in the attempt to beneficially
affect the other.

Brain—cerebral iron overload is implicated
in neurodegeneration

In the central nervous system (CNS), macrophages appear as
microglia and are in close proximity to neurons, astrocytes,
and oligodendrocytes. The microglia depend on the transcrip-
tion factors PU.1 (encoded by SPI1) and BSpalt-like^-1 (Sall1)
[25] and are important for maintaining CNS homeostasis in
physiological conditions and for restoring it after injury [84].
This paradigm has also been addressed in the context of iron
metabolism. For instance, after experimental intracranial hem-
orrhage (ICH), microglia clear RBC but may also sustain in-
flammation and cause secondary damage. It is thus conceiv-
able that the molecular machinery for RBC degradation and
heme iron recycling including Hmox1 and Nramp1 [213] is
essential for microglial function [19]. Indeed, long-term in-
duction of Hmox1 promotes the resolution of ICH [260].
However, this may not be a feasible therapeutic approach to
be readily translated into clinical practice because various
cerebral cell types differ in their cytoprotective enzyme reper-
toire and thus in their sensitivity to iron-induced damage
[255]. Cell type-specific overexpression of Hmox1 in astro-
cytes, although neuroprotective in some in vitro models [240]
and in ICH in youngmice, is deleterious in other settings [133,
215, 216] and results in spontaneous cerebral iron deposition
and consecutive movement and psychiatric abnormalities with
aging [36, 218]. When the iron chelator deferoxamine (DFO),
however, is administered early after experimental ICH,
microglial activation is blunted and reduced local concentra-
tions of tumor necrosis factor (TNF) and interleukin (IL)-1ß
are associated with protection from neuronal death. Therefore,
early DFO treatment in experimental ICH translates into im-
proved neurologic outcome [222].

Local iron accumulation in the brain (particularly in neurons
and astrocytes) is linked to several neurodegenerative disorders,
collectively referred to as neurodegeneration with brain iron ac-
cumulation (NBIA) [127]. Although iron-mediated generation of
ROS and injury to mitochondria are likely mechanisms [196,
204], the interplay between microglia, neurons, and other cell
types in cerebral iron homeostasis is incompletely characterized.

A paradigmatic yet rare NBIA condition is the neuroferritinopathy
that is caused by a mutation in the coding region of the FTL
gene [44, 45]. Although FTH carries the ferroxidase activity
that is required to oxidize ferrous iron and to contain it within
the FT shell, FTL facilitates the mineralization of ferric iron
thus supporting FTH activity. The composition of FT is cell
type-specific, and central neuronal FT are L chain-rich [236].
In addition, mutated FTL proteins may have a dominant neg-
ative effect on FT’s stability and resistance to oxidative dam-
age [12, 140, 160]. It would appear that neuronal iron efflux is
insufficient to remove surplus and potentially harmful iron
from the cytoplasm. Whether or not a transfer of iron between
neurons and microglial cells exists is unclear. However, it has
been proposed that the siderophore-binding peptide lipocalin-
2 (NGAL, Lcn2) is secreted by activated microglia and other
cell types including neurons to transfer iron across cellular
membranes. Notably, Lcn2 also affects a variety of brain func-
tions from cognition to emotional stress [104]. Interestingly,
the hyperferritinemia-cataract syndrome that is caused by a
mutation in a specific non-coding region of the FTL gene,
the iron-responsive element (IRE), is not associated with iron
accumulation in the brain but with the formation of ferritin
crystals in the ocular lenses, resulting in cataracts in early
adulthood [23, 83, 195].

Several common neurodegenerative disorders such as
Alzheimer’s and Parkinson’s diseases are also characterized
by iron deposition, but they are not considered as classical
NBIA. Whether or not the latter is causatively involved in
the pathophysiology of the disease or a consequence of neu-
rodegeneration is currently not known, as the influx of iron-
rich inflammatory cells and their subsequent death may con-
tribute to neuronal iron overload [233]. In addition, an intrin-
sic defect of neurons in cellular iron handling may exist. For
instance, in neuronal cells exposed to amyloid beta peptide
fragments, iron chelation with DFO or deferiprone (DFP) re-
duces ROS generation via the NADPH oxidase [181]. Apart
from neurons, activated microglia can accumulate iron in
Alzheimer’s disease, e.g., in the hippocampus as detected
my ultra-high-resolution MR [258]. A similar observation
has beenmade in the setting of theHFEH63D polymorphism,
which is otherwise associated with type I hereditary hemo-
chromatosis and has been linked to neurodegeneration. Mice
with the homologous mutation in Hfe have increased FTL
chain expression in microglia, suggesting iron overload
[169]. This phenotype is discrepant from the iron-poor one
of other Hfe-deficient macrophage populations, but the under-
lying mechanism remains unknown.

Similar to cardiac imaging, IONs are selectively taken up
by microglia as a function of its activation state. Conceivably,
microglial activation due to ischemia or inflammation results
in MR signal alterations that can be used for diagnostics.
However, microglia are also exquisitely sensitive to the poten-
tial toxicity of IONs because they are rapidly degraded within
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lysosomes and their iron catalyzes ROS generation [184].
Although hepcidin production has been observed in the brain,
co-culture models suggest that microglia enhance hepcidin
expression by neurons via IL-6 in a paracrine fashion [191].
These findings thus contrast to what has been shown for co-
cultured primary Kupffer cells and hepatocytes inasmuch as
culture supernatants from primary Kupffer cells blunted
hepcidin production [228].

The published studies provide growing insight into how
microglia affect brain function, local iron homeostasis, and
iron-mediated neurodegeneration. The human brain is proba-
bly the most complex system known, and we need to better
understand how its different cell types interact both under
physiological conditions and challenges such as cognition or
memory, how iron affects the function of the various cerebral
cell types, and howwe can potentially interfere to prevent iron
from contributing to CNS disease.

Retina—the location in which iron aggravates light
damage

From an evolutionary standpoint, the retina is part of the CNS.
It is thus not surprising that it handles iron similarly to the
cerebrum. Since photoreceptors are sensitive to iron toxicity,
local iron regulatory circuits including the hepcidin-Fpn1 axis
operate in the retina [261]. Müller glial cells and endothelial
cells of the retina both express Fpn1, but only the latter cell
type is sensitive to hepcidin regulation. This suggests that
endothelial Fpn1 is the gatekeeper for iron transport into the
retina [232]. In addition, experimental light damage to the
retina results in microglial activation, its migration to the outer
retina, and in induction of FT H and L chains. These effects
along with oxidative stress to photoreceptors can be prevented
by the oral iron chelator DFP [217]. Therefore, the retina is
another organ that is sensitive to iron toxicity but has evidence
of endogenous mechanisms to maintain local iron homeosta-
sis in the microenvironment.

Bone—osteoclasts are iron-dependent

Osteoclasts are bone-resident cells of the MPS whose primary
function is to absorb bone tissue in order to maintain, repair,
and remodel the skeleton. Osteoclast generation requires the
fusion of macrophages, the presence of the cytokines RANKL
and M-CSF, and iron. Osteoclast precursors take up iron via
Tfr1 and utilize six-transmembrane epithelial antigen of pros-
tate (Steap4) as ferrireductase [262]. In addition, the transcrip-
tion factor peroxisome proliferator-activated receptor-gamma
coactivator 1 beta (PGC-1ß) is essential for osteoclast differ-
entiation [101]. Apparently, both Tfr1-mediated iron uptake
and PGC-1ß activation ensure mitochondrial respiration in
osteoclasts as prerequisite for energy generation and proton
secretion. While PGC-1ß transactivates genes of the

mitochondrial respiratory chain, iron acquired via Tfr1 is in-
corporated into heme moieties and iron-sulfur clusters in mi-
tochondria ensuring activity of their enzyme repertoire.
Conceivably, iron overload is often associated with skeletal
disease. For instance, surplus iron in thalassemic patients may
promote osteoclast differentiation and function and thus
contribute to bone resorption [101].

Arthropathy of the second and third metacarpophalangeal
joints is a typical manifestation of type I hemochromatosis
[94]. Elevated vascular cell adhesion molecule 1 (VCAM1)
levels are an accurate biomarker to diagnose this condition, but
whether the adhesion molecule is also involved in its pathogen-
esis remains unclear [170]. Of interest, circulating VCAM1 is
shed by the metalloproteinase ADAM metallopeptidase domain
17 (ADAM17, AKA TNF alpha-converting enzyme (TACE))
which is activated by inflammatory stimuli [81]. In addition,
membrane VCAM1 is expressed on CD169+ macrophages in
the spleen and provides a molecular anchor to retain hematopoi-
etic stem cells in themurine spleen, although it is unclearwhether
this is also relevant to arthropathy [61]. Taken together, despite
the essential role of iron for osteoclast development and the clear
association of skeletal disease and iron overload, we have little
information about underlying mechanisms.

Bone marrow—are erythroblasts Bnursed^ with iron?

Embedded in cavities and the spongiosa of bones lies the BM as
organ of hematopoiesis. Erythroid island macrophages (EIM)
are a population of BM-resident macrophages that support
erythropoiesis as Bnurse cells^ [17, 192]. The smallest erythro-
poietic unit thus consists of a central EIM surrounded by several
erythroblasts (and stromal cells). This microarchitecture is
maintained by adhesive interactions because EIM depend on
a set of adhesion molecules. For instance, EIM express the αV
integrin which binds ICAM4 on erythroid cells, and ICAM4
KOmice have reduced numbers of erythropoietic islands [126].
Similarly, macrophage VCAM1 interacts with the
integrin-α4ß1 on erythroblasts. It is well characterized that eryth-
roblasts expel their nuclei during differentiation and that these are
taken up by EIM after phosphatidylserine exposure via Tim4 and
MER proto-oncogene, tyrosine kinase (MerTK) [234, 254].

The transcription factor SpiC and its down-stream effector
Hmox1 are both essential for EIM differentiation, since abla-
tion of either gene reduces EIM number [73, 88]. Less clear
however remains the role of EIM and Hmox1 in local iron
management in the BM and mechanisms by which EIM may
assist erythroblasts in iron acquisition. One possibility is that
erythroblasts acquire ionic iron via their proximity to Fpn1 on
EIM. However, since Fpn1 exports only divalent iron and
erythroblasts largely rely on Tfr1 (AKA CD71) to satisfy their
iron demand, one can speculate that either abundant amounts
of ceruloplasmin and TF (to oxidize divalent iron) are present
in erythroid islands or that direct cell-to-cell transfer of iron
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from EIM to erythroblasts exists. However, the deletion of
Fpn1 by Cre recombinase expressed under the lysozyme
M promoter results in iron accumulation in macrophages,
including BM macrophages, and mild anemia. This sug-
gests that EIM utilize Fpn1 to export iron and thus func-
tion as iron-rich nurse cells [259]. Such a mechanism may
be particularly relevant in contexts when erythropoiesis is
hyperactive yet inefficient and when local hemolysis oc-
curs in the BM (i.e., in thalassemia syndromes). Another
hypothesis is that EIM act as Biron buffers^ that continu-
ously releases adequate amounts of iron even when plas-
ma iron levels fluctuate. Yet, another idea is that despite
their other essential functions EIM contribute little to the
iron acquisition by erythroblasts and that the latter import
any TF-bound iron the blood stream delivers. Data in
support of this concept has been generated using the
CD169-DTR model: The depletion of EIM (and other
CD169+ macrophages) had only little impact on the res-
toration of erythropoiesis after BM transplantation.
Concretely, a moderate decrease of iron supply to eryth-
roblasts as deduced from the reduced Hb content in retic-
ulocytes was observed [38]. In conclusion, much needs to
be learned about local mechanisms and their regulation of
iron shuttling from EIM to erythroblasts at various stages
of their differentiation.

The complexity of macrophage iron handling
at the cellular level

Macrophages express a range of factors mediating iron
uptake (summarized in the Table 1) which essentially face
only two pathways for iron efflux, Fpn1 for ionic iron and
feline leukemia virus subtype C receptor (Flvcr) for heme
iron (Fig. 2), although alternatives routes may exist [49,
136]. One such mechanism may involve Lcn2 and one of
its receptors, LcnR (AKA SLC22A17). Lcn2 binds dis-
tinct types of so-called siderophores, low molecular mass
compounds with remarkably high affinity and specificity
for ferric iron. These are best characterized in bacteria, but
eukaryotes including fungi and mammals produce
siderophores, too [16, 42, 67, 86, 106]. While some of
these compounds such as citrate are ubiquitous substrates,
other mammalian siderophores such as catechols are
probably synthesized from commensal metabolites or
dietary precursors [11, 50, 252]. Much needs to be
learned about the biology of mammalian siderophores
whose important functions may extend beyond mitochondrial
iron homeostasis, erythropoiesis, and host defense [47, 134,
135].

As discussed above, scavenger receptors for the uptake of
senescent or damaged RBC and for the clearance of com-
plexed and free forms of Hb and heme are expressed at high

levels in liver and spleen yet may be induced at other locations
in response to inflammatory stimuli. These scavenger recep-
tors are coupled to a down-stream machinery of heme detox-
ification. Its two major functional components are HRG1
which shifts heme from the endosome/lysosome to the cyto-
plasm and Hmox1 which then metabolizes heme [117]. In
addition to the phagocyte-specific scavenger receptors, Tfr1
and divalent metal transporter 1 (Dmt1), two ubiquitous iron
import proteins, are also expressed by macrophages.

A broad spectrum of iron uptake pathways

Macrophages express a range of factors mediating iron
uptake, although the relative importance of these factors
to different macrophage populations has not been sys-
tematically studied. It is well established that RPM and
KC express the complete machinery for RBC clearance
and heme iron recycling [72, 88, 231]. At either of these
locations (spleen and liver), CD163 and CD91, two
members of the scavenger receptor family, are expressed
at high levels. Whereas CD163 binds both free and
haptoglobin-bound Hb, CD91 accepts heme-HPX com-
plexes. However, many other molecules participate in
the overall process. Among these, heme-regulated gene
1 (HRG1) shifts heme from the endosome/lysosome to
the cytoplasm, which is then metabolized by Hmox1
[117]. At the cell surface membrane, macrophages pos-
sess the heme exporter Flvcr and its genetic deletion
results in RPM iron overload [108]. Tfr1, which is also
known as CD71, is widely expressed by isolated macro-
phages, and it may form a major route of iron uptake in
the absence of RBC (an indirect iron source), though it
also appears to be important in adaptive immunity [103,
138]. Dmt1 shifts iron from the extracellular space to the
cytoplasm and, in its alternately spliced form, from the
Tfr1 endosome to the cytoplasm [69, 99, 139]. At either
location, Dmt1 only accepts ferrous iron along with other
divalent cations, such as copper or manganese, and co-
localizes with an iron reductase [152, 177].

The control of cytosolic iron levels

FT is the central mechanism of iron storage in macro-
phages and other cell types (25, 179, (236). However,
LysM-Cre FTH mice have no apparent phenotype sug-
gesting that iron storage and trafficking are well con-
trolled in myeloid cells by other mechanisms [46, 239].
One such mechanism to maintain cytosolic iron levels
are the iron regulatory proteins (IRPs) 1 and 2 [5, 179,
195]. IRPs sense free labile iron and control cellular iron
homeostasis at the post-transcriptional level: Due to their
ability to interact with iron-responsive elements (IREs)
that are present in the non-coding mRNA sequences of
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Tfr1, Dmt1, Fpn1, FTH, and FTL chains, fluctuations in
intracellular iron are promptly counterbalanced [179,
195]. Interestingly, the functions of IRPs1 and 2 are re-
dundant in macrophages and only targeted deletion of

both isoforms via the LysM-Cre system results in in-
creased FT levels and intracellular iron retention [193].
The deletion of both IRPs in macrophages does not af-
fect RBC recycling but impairs their nutritional immune

Table 1 Selected proteins involved in macrophage iron handling

Protein Designation(s) Gene name Function

TFR1 Transferrin receptor-1; CD71 TFRC Uptake of TF-bound iron; essential for erythroblasts and
lymphocytes [128, 141]; genetic defect associated with
common immunodeficiency (IMD-46) [103]

HFE HFE; HLA-H HFE Associates with TFR1; the C282Y HFE mutation causes
hemochromatosis (type 1) characterized by
macrophage iron depletion [18]; affects outcome of
infections [13]

DMT1 Divalent metal transporter-1;
Solute Carrier Family 11 member A2

SLC11A2 Uptake of ferrous iron through the cell surface membrane
and from TFR1 endosomes; genetic defect associated
with iron deficiency anemia and hepatocellular iron
accumulation [68, 69, 99]

DCYTB Duodenal cytochrome b;
Cytochrome b reductase 1

CYBRD1 Reduction of ferric iron to its ferrous form prior to uptake
via DMT1 [152, 159]; induced in iron deficiency [264]

STEAPs Six-transmembrane epithelial antigen of prostate e.g. STEAP4 Reduction of ferric iron prior to uptake via TFR1, e.g.
STEAP4 in osteoclast precursors [95, 124, 177, 262]

LCNR Lipocalin-2 receptor; 24P3R SLC22A17 Bi-directional iron transport across the cell membrane
requiring LCN2 and a catecholate-type siderophore [49,
210]

LCN2 Lipocalin-2; Neutrophil gelatinase associated lipocalin LCN2 Binds iron-laden siderophores of different classes [11, 70];
acts as chemotaxin [206]; associated with cancer
metastasis

NRAMP1 Natural resistance-associated
macrophage protein-1

SLC11A1 Iron (and other divalent metal ion) export out of the
phagolysosome for iron withholding from pathogens
[14, 20, 163]; also affects odds of developing
autoimmune diseases

IRP1 Iron regulatory protein-1; Aconitase 1 ACO1 Interaction with IREs, stabilize TFR1 andDMT1mRNAs;
blocks translation of FPN1 and FT mRNAs; its
iron-sulfur cluster disassembles upon
cellular iron starvation [242]

IRP2 Iron regulatory protein-2 IREB2 Similar to IRP1; becomes deactivated via the ubiquitin
proteasome pathway when surplus iron is sensed in the
cytosol [77, 243]

FTH Ferritin heavy chain FTH Iron storage; sole carrier of the ferroxidase activity of
cytosolic FT [197]; anti-apoptotic [186, 236]

FTL Ferritin light chain FTL Iron storage; genetic defect causes neuroferritinopathy
(coding region) or hyperferritinemia cataract syndrome
(non-coding IRE) [3, 15, 26]

FPN1 Ferroportin-1 SLC40A1 Ionic iron exporter [1, 56, 150, 151, 263]; receptor for
hepcidin [173]

Hepcidin Hepcidin antimicrobial peptide HAMP Binds to FPN1 to label it for internalization and
degradation; induced by IL-6, IL-22 and Bmp6 [6, 7,
172]; genetic defect results in juvenile
hemochromatosis (type 2B) [174, 194]

HEPH Hephaestin HEPH Oxidizes ferrous iron for loading onto TF [4, 33]

HRG1 Heme-regulated gene-1 HRG1 Shifts heme from the lysosome to the cytosol [35, 250]

FLVCR Feline leukemia virus subgroup C receptor FLVCR1 Exports heme across the cell membrane; genetic deletion
results in RPM iron overload [108]
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functions against intracellular bacteria, such as
Salmonella Typhimurium [166]. This pathogen preferen-
tially infects murine macrophages and has a proliferative
advantage in the absence of both IRPs resulting in in-
creased bacterial burden and reduced survival in a sys-
temic infection model. Therefore, macrophage IRPs are
required to regulate their effector functions upon infec-
tion with an iron-dependent pathogen.

Interplay of macrophage iron metabolism and immune
functions

Macrophage iron metabolism and immune functions are inter-
connected [57, 79, 165, 247]. Clinical data as well as many
studies in infection models show that macrophage iron over-
load, often resulting from hemolysis or iron supplementation,
interferes with their antimicrobial activity (Fig. 2b). Several
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mechanisms explain this negative effect that surplus iron has
on macrophage effector functions and the outcome of infec-
tious diseases. First, a range of intracellular microbes can re-
sist killing by macrophages by gaining access to macrophage
iron pools [30, 245]. Second, iron alters gene transcription,
translation, and mitochondrial respiration in macrophages
[165, 175]. Specifically, macrophage functions driven by
IFN-γ are impaired when macrophages are exposed to surplus
iron [138, 162, 176] largely because iron directly inhibits the
binding activities of the transcription factors nuclear factor
interleukin-6 (NF-IL6) and hypoxia-inducible factor (HIF)-
1α [55, 153] [176]. Because of its inhibitory effects on NF-
IL6 and HIF-1α, iron excess blocksNos2 transcription and the
high output formation of NO which worsens bacterial killing
of iron-laden macrophages [91, 164]. In addition, IFN-γ in
conjunction with TLR4 ligation results in NF-κB-dependent
activation of HIF-1α and increased transcription of TfR1 thus
aggravating macrophage iron overload [224]. Moreover, hyp-
oxia impairs NO production by Nos2 and thus blunts the an-
timicrobial activity of macrophages towards Leishmania
major [142]. Another layer of complexity is added by the fact
that TLR4 signaling stabilizes HIF-1α activation via induc-
tion of FTH and hypoxia stimulates arginase-1 expression in
myeloid cells thus undermining Leishmania killing [142,

209]. Mechanistically, these two modes of HIF activation are
distinct. While TLR4 signaling results in depletion of iron as
co-substrate which prolyl hydroxylases (PHDs) require to tag
HIF for degradation, hypoxia, per definition, impairs PHD
activity due to a lack of their substrate oxygen. Nevertheless,
both hypoxia (secondary to anemia or impaired microcircula-
tion) and the presence of TLR ligands may be present at sites
of infection in close spatial or temporal association. In addi-
tion, monocytes may be exposed to fluctuating levels of both
stimuli (hypoxia and inflammation) as they travel to sites of
injury and infiltrate the tissue to differentiate and become ses-
sile. Therefore, due to its sensitivity to both oxygen and iron,
the transcription factor HIF-1α appears to hold a central posi-
tion in the interplay of macrophage iron homeostasis and
immunity.

In contrast to its inhibitory effect on NO, iron stimulates the
non-enzymatic generation of ROS which may promote their an-
timicrobial activity but contribute to tissue damage and the path-
ogenesis of many inflammatory disorders. In this context, iron
present in heme can stimulate the production of ROS and of pro-
inflammatory cytokines such as TNF, IL-1ß, and IL-6 [241]. In
contrast, arginase-1, which depletes the Nos2 substrate arginine
by converting it to ornithine [62, 205], is reduced by heme. These
effectsmay contribute to the inflammatory characteristics of sick-
le cell disease and can be ameliorated by the heme scavenger
HPX. Accordingly, free heme, which is predicted to accumulate
when Hmox1 is inhibited, activates NF-κB to induce TNF and
Nos2 transcription resulting in improved control of Salmonella
infection [154]. Intriguingly, the accumulation of heme during
the course of sepsis-induced hemolysis also impairs phagocyte
functions due to interference with actin cytoskeleton rearrange-
ments resulting in poor outcome [146].

A phagolysosomal transporter with homology to Dmt1
(Nramp2) is Nramp1 [8, 20, 71, 75]. Its cation transport function
is directly linked to the antimicrobial activity ofmacrophages and
DCs [74, 163, 219]. In addition, the functional form of Nramp1
in myeloid cells shifts the balance in T helper cell activity to-
wards Th1, which may increase resistance to infections while
increasing the susceptibility to autoimmune diseases [167,
226]. However, the directionality of iron transport is still under
some debate [32, 71, 225, 249]: Most studies have shown that
Nramp1 shifts iron and other divalent cations from the
phagolysosome to the cytosol. This pathway is important for iron
recycling after erythrophagocytosis [213] and serves as a mech-
anism of nutrient withdrawal that is particularly efficient in host
defense against Mycobacterium, Salmonella, and Leishmania
species [31]. However, some data suggest that Nramp1 in fact
pumps iron into the phagolysosome where it may boost ROS
generation [121, 122].

As discussed earlier, nanoparticles are increasingly used
in clinical routine for imaging studies. Although intended to
be otherwise inert, it has recently been uncovered in tumor
models that nanoparticles may alter the biology of both

Fig. 2 a In homeostatic conditions, iron uptake and release pathways are
coordinated ensuring efficient iron recycling from aged red blood cells
(aRBC) and iron delivery to sites of erythropoiesis. Apart from
erythrophagocytosis, iron uptake mechanisms include (left to right)
ferritin (FT) receptors such as scavenger receptor class A member
(Scara)-5 and T-cell immunoglobulin and mucin domain-containing
molecule (Tim)-2, transferrin (TF; depicted as monomer for simplicity)
and its receptor Tfr1, the ferric reductase duodenal cytochrome B (DcytB)
and divalent metal transporter (Dmt)-1, lactoferrin (LF) and its receptor
LfR, lipocalin (Lcn)-2 and its receptor LcnR, haptoglobin-hemoglobin
(Hb) complexes and their receptor CD163, and hemopexin (HPX)-
heme complexes and their receptor CD91. Endosomal iron transporters
Dmt1, natural resistance-associated macrophage protein-1 (Nramp1), and
heme-regulated gene-1 (HRG1) shift ferrous iron or heme to the
cytoplasm, from where the former can be exported via ferroportin
(Fpn)-1 and the latter metabolized by heme oxygenase (Hmox)-1 or
exported via feline leukemia virus subgroup C receptor (Flvcr).
Macrophage iron homeostasis ensures proper function including the
activity of pivotal transcription factors nuclear factor (NF)-IL6, NF-κB,
and hypoxia-inducible factor (HIF)-1α, all of which are iron regulated. b
Macrophage iron overload may result from an increase in circulating or
local hepcidin concentrations, an elevated TF saturation, free iron excess,
or hemolysis with subsequent accumulation of damaged RBC (dRBC),
free Hb, or free heme. If severe, all these mechanisms will overwhelm the
macrophage’s capacity to contain, store, and detoxify iron resulting in an
increase of free iron, heme, and/or FT in cells. On the one hand, surplus
intracellular iron may serve as nutrient for intraphagosomal or
cytoplasmatic pathogens (e.g. for Gram-negative rods in the Tfr1-
endosome and the cytoplasm). On the other hand, iron overload differen-
tially affects distinct innate immune pathways. Surplus iron blocks the
binding of transcription factors NF-IL6 and HIF-1α to their respective
target promoter sequences. In parallel, iron facilitates the generation of
ROS and thus NF-κB activation. Therefore, iron overload may cause a
dysbalance in the transcriptional response to macrophage activation

R
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tumor cells and tumor-associated macrophages, albeit with
favorable results. Two elegant studies have shown that the
application of nanoparticles to tumor-bearing mice is suffi-
cient to induce clinical remission. One of these papers im-
plicated a direct tumoricidal effect of iron delivered by ul-
trasmall polyethylene glycol particles and attributed tumor
regression to the induction of ferroptosis in malignant cells
[112]. The other study suggested that IONs stimulate TNF
expression while inhibiting arginase-1 which results in im-
proved killing of tumor cells [257]. These novel and exciting
data support the general idea that the modulation of macro-
phage iron homeostasis is a promising way to control their
immune functions and alter myeloid-driven disease process-
es in infection, auto-immunity, atherosclerosis, and possibly
also cancer [143, 167]

Conclusion

The MPS comprises a heterogeneous population of tissue-
specific leukocytes. It is a cornerstone of innate immunity, regu-
lates the adaptive immune system, and is indispensable for tissue
development, homeostasis, and repair. One ofmacrophages’ cen-
tral metabolic functions is to eliminate senescent and damaged
RBCs and to recycle their heme-bound iron to maintain systemic
and cellular iron homeostasis. The role of macrophages in iron
handling preserves iron homeostasis and tissue integrity. Under
physiologic conditions, macrophages recycle the iron for eryth-
ropoiesis, while under hemolytic stress, macrophages detoxify
heme to prevent iron toxicity towards parenchymal cells and
tissues.

Only recently, we have begun to appreciate the specific func-
tions of variousmacrophage populations in the body and to study
their potential roles iron metabolism. New technologies are en-
tering the field including systems biology approaches, in situ
LASER capture, single cell RNA sequencing, cell type-specific
genomic editing with CRISPR/Cas9, and cell type-specific vec-
tors to silence genes of interest [43]. Such methods will be im-
portant to critically interrogate results obtained by more drastic
and unspecific approaches (such as global macrophage depletion
or MAC sorting) and to understand the spatiotemporal orches-
tration of iron metabolism at the single cell level and in the
context of the tissue microenvironment characterized by cell-to-
cell contact and paracrine signals. Most of all, we face the chal-
lenge to translate findings obtained in small animal models to
human subjects to improve patient care.
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