663 research outputs found

    A New Method to Calculate the Spin-Glass Order Parameter of the Two-Dimensional +/-J Ising Model

    Full text link
    A new method to numerically calculate the nnth moment of the spin overlap of the two-dimensional ±J\pm J Ising model is developed using the identity derived by one of the authors (HK) several years ago. By using the method, the nnth moment of the spin overlap can be calculated as a simple average of the nnth moment of the total spins with a modified bond probability distribution. The values of the Binder parameter etc have been extensively calculated with the linear size, LL, up to L=23. The accuracy of the calculations in the present method is similar to that in the conventional transfer matrix method with about 10510^{5} bond samples. The simple scaling plots of the Binder parameter and the spin-glass susceptibility indicate the existence of a finite-temperature spin-glass phase transition. We find, however, that the estimation of TcT_{\rm c} is strongly affected by the corrections to scaling within the present data (L≤23L\leq 23). Thus, there still remains the possibility that Tc=0T_{\rm c}=0, contrary to the recent results which suggest the existence of a finite-temperature spin-glass phase transition.Comment: 10 pages,8 figures: final version to appear in J. Phys.

    Competition between plaquette and dimer phases in Heisenberg chains

    Full text link
    We consider a class of one-dimensional Heisenberg spin models (plaquette chains) related to the recently found 1/5-depleted square-lattice Heisenberg system CaV4O9CaV_4O_9. A number of exact and exact-numerical results concerning the properties of the competing dimer and resonating plaquette phases are presented.Comment: 9 pages (Latex), 4 ps-figures included, (accepted for publication in Phys.Lett. A

    Griffiths Inequalities for Ising Spin Glasses on the Nishimori Line

    Full text link
    The Griffiths inequalities for Ising spin glasses are proved on the Nishimori line with various bond randomness which includes Gaussian and ±J\pm J bond randomness. The proof for Ising systems with Gaussian bond randomness has already been carried out by Morita et al, which uses not only the gauge theory but also the properties of the Gaussian distribution, so that it cannot be directly applied to the systems with other bond randomness. The present proof essentially uses only the gauge theory, so that it does not depend on the detail properties of the probability distribution of random interactions. Thus, the results obtained from the inequalities for Ising systems with Gaussian bond randomness do also hold for those with various bond randomness, especially with ±J\pm J bond randomness.Comment: 13pages. Submitted to J. Phys. Soc. Jp
    • …
    corecore