Supplemental Table 1-Mean colony numbers +/- standard deviation for cell viability assays.. Cell counts were in duplicate, n=3.

Figure	Strain	SC+gluc	-N	-leu	-N-gluc	-N+glyc	Ras2 ^{Val19}
U		+/-SD	+/-SD	+/-SD	+/-SD	+/-SD	+/-SD
Fig. 1B	WT	121.5+/-	92.4+/-	95.6+/-			
		7.1	9.5	8.8			
	csg2	102.3+/-	10.8+/-	8.6+/-			
		9.9	5.5	3.6			
	csg2 kei1	114.7+/-	63.6+/-				
		11.6	15.4				
	kei1	141.1+/-	123.6+/-				
		5.9	11.6				
	ipt1 csg2	115.7+/-	15.2+/-				
		7.3	5.5				
	ipt1	134.8+/-	106.1+/-				
		12.3	20.1				
Fig. 1C	WT rho0	89.5+/-	78.8+/-				
		17.7	9.4				
	WT	131.2+/-	112+/-				
		6.2	7.6				
	WT	145.7+/-	132.2+/-				
	+CCCP	9.2	5.0				
	CSGZ	99./+/-	/1.5+/-				
		3.0	5.9				
	csg2 rno0	88.1+/-	/5+/-				
		0.1	3.5				
	LSYZ	122.1+/-	94.0+/-				
Fig 2D		$\frac{4.0}{101 4 \pm 1}$	10.2		82.6+/-	025+/-	
1 Ig. 2D	VV 1	21			10.2	68	
	csa2	884+/-			667+/-	61 4+/-	
	0392	7.4			5.4	11.6	
Fig. 4D	WT	103.4+/-	90.2+/-		85.4+/-	11.0	
8	[Ras2 ^{Val19}]	9.2	9		5.4		
	csg2	79.5+/-	2.5+/-		4.5+/-		
	[Ras2 ^{Val19}]	10.6	4.3		3.6		
	ras2 csg2	134.7+/-	59.8+/-				
		3.8	13.3				
	WT	94.1+/-					89.8+/-
		9.4					11.6
	csg2	85.4+/-					41.9+/-
		8.0					20.8
Fig. 5B	snf1	151.3+/-	27.5+/-				
		11.8	9.0				
	reg1 csg2	99.1+/-	61.9+/-				
		11.3	7.4				
	csg2	115.9+/-	74.8+/-				
	[SNF1-	14.0	11.1				
	653KJ	101./	042.4				
	reg1	121+/-	94.3+/- 71				
		4.3	/.1				
					L		

Supplemental Fig. 1-(A) Cell staining with propidium iodide confirms rapid and massive cell death in $csg2\Delta$ cells deprived of nitrogen. (B) Cells were shifted to nitrogen deprivation medium for various times and stained with propidium iodide and annexin V-FITC (Clontech Laboratories) according to manufacturer's instructions. As a positive control for apoptotic death, wild-type cells were exposed to 10 mM H₂O₂ for 4h before annexin V-FITC staining. (C) Growth of $csg2\Delta$ cells on SC plates with H₂O₂.

M

4h -N

2h -N

Supplemental Fig. 2-Relative mitochondrial membrane potential, assayed by TMRM fluorescence. Fluorescence images were quantitated by Image J; 50 cells/experiment; n = 3. (A) ETC inhibitors (antimycin A, 100 μ M; Na azide, 10 μ M; CCCP, 10 μ M; TET, 100 μ M) were added for 60 min before staining with TMRM, as described in Methods. (B) Representative images of TMRM fluorescence with Mitotracker green to localize mitochondria in mid-log cells. Matched exposure indicates *csg2* Δ cells photographed at the same exposure time with images adjusted at the same Photoshop settings as those for wild-type cells. (C) Quantitation of TMRM fluorescence in mid-log cells and after shifting to nitrogen deprivation medium for 1h.

В

Supplemental Fig. 3- Oxygraph measurement of O₂ consumption by mitochondria isolated from WT and $csg2\Delta$ cells growing in SC medium with 3% glycerol. Mitochondria were normalized to protein. State (1) indicates basal mitochondrial O₂ consumption. State (2) indicates O₂ consumption after addition of 10 µM α ketoglutarate. State (3) is after addition 500 µM ADP, reflecting Vmax respiration. State (4) occurs after consumption of ADP.

1 minute

O2 flux (pmol/(s*mL)

Supplemental Fig. 4- (A) Cytoplasmic catalase activity, measured in cell lysate, and mitochondrial catalase activity, measured in isolated mitochondria, are decreased in cells expressing *MET-RAS2^{Val19}*, and in *csg2Δ* cells. Hyperactive Ras was induced by washing exponentially growing cells with water and resuspending in methionine-free medium for 1h. *CTT1* and *CTA1* encode cytoplasmic and mitochondrial catalase activity, respectively.

(B) Heat shock sensitivity was measured by shifting cells to 52°C for 10 min and then plating for viability. Colony numbers were expressed as a percent of those formed from cells that were not temperature-shifted but plated directly.

(C) Hyperactive Ras2^{Val19} prevents increased MMP during nitrogen deprivation. Exponentially growing wild-type cells bearing *pMET-RAS2^{Val19}* were washed with water and incubated in medium with or without methionine for 3h; cells were then washed with water and resuspended in nitrogen deprivation medium for 1h. Relative MMP was measured by TMRM fluorescence; fluorescence in 50 cells were quantitated by Image J/experiment; n = 3.

Supplemental Fig. 5- ROS accumulation in $csg2\Delta$ cells is abrogated by $reg1\Delta$, constitutively activating Snf1; ROS accumulates in $snf1\Delta$ cells during nitrogen deprivation. (A) Quantitation of DHE stained cells post-nitrogen deprivation; fluorescence in 150 total cells quantitated by Image J; n = 3. (B) DHE staining of cells after nitrogen deprivation for 4h.

