241 research outputs found

    Biallelic variants in ADARB1, encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy

    Get PDF
    Background: Adenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects. / Methods: We studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing. / Results: All patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity. / Conclusion: In conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development

    Biallelic variants in ADARB1, encoding a dsRNA-specific adenosine deaminase, cause a severe developmental and epileptic encephalopathy.

    Get PDF
    BACKGROUND: Adenosine-to-inosine RNA editing is a co-transcriptional/post-transcriptional modification of double-stranded RNA, catalysed by one of two active adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. ADARB1 encodes the enzyme ADAR2 that is highly expressed in the brain and essential to modulate the function of glutamate and serotonin receptors. Impaired ADAR2 editing causes early onset progressive epilepsy and premature death in mice. In humans, ADAR2 dysfunction has been very recently linked to a neurodevelopmental disorder with microcephaly and epilepsy in four unrelated subjects. METHODS: We studied three children from two consanguineous families with severe developmental and epileptic encephalopathy (DEE) through detailed physical and instrumental examinations. Exome sequencing (ES) was used to identify ADARB1 mutations as the underlying genetic cause and in vitro assays with transiently transfected cells were performed to ascertain the impact on ADAR2 enzymatic activity and splicing. RESULTS: All patients showed global developmental delay, intractable early infantile-onset seizures, microcephaly, severe-to-profound intellectual disability, axial hypotonia and progressive appendicular spasticity. ES revealed the novel missense c.1889G>A, p.(Arg630Gln) and deletion c.1245_1247+1 del, p.(Leu415PhefsTer14) variants in ADARB1 (NM_015833.4). The p.(Leu415PhefsTer14) variant leads to incorrect splicing resulting in frameshift with a premature stop codon and loss of enzyme function. In vitro RNA editing assays showed that the p.(Arg630Gln) variant resulted in a severe impairment of ADAR2 enzymatic activity. CONCLUSION: In conclusion, these data support the pathogenic role of biallelic ADARB1 variants as the cause of a distinctive form of DEE, reinforcing the importance of RNA editing in brain function and development

    A novel marine radar targets extraction approach based on sequential images and Bayesian Network

    Get PDF
    This research proposes a Bayesian Network-based methodology to extract moving vessels from a plethora of blips captured in frame-by-frame radar images. First, the inter-frame differences or graph characteristics of blips, such as velocity, direction, and shape, are quantified and selected as nodes to construct a Directed Acyclic Graph (DAG), which is used for reasoning the probability of a blip being a moving vessel. Particularly, an unequal-distance discretisation method is proposed to reduce the intervals of a blip’s characteristics for avoiding the combinatorial explosion problem. Then, the undetermined DAG structure and parameters are learned from manually verified data samples. Finally, based on the probabilities reasoned by the DAG, judgments on blips being moving vessels are determined by an appropriate threshold on a Receiver Operating Characteristic (ROC) curve. The unique strength of the proposed methodology includes laying the foundation of targets extraction on original radar images and verified records without making any unrealistic assumptions on objects' states. A real case study has been conducted to validate the effectiveness and accuracy of the proposed methodology

    What makes a cyanobacterial bloom disappear? A review of the abiotic and biotic cyanobacterial bloom loss factors

    Get PDF
    Cyanobacterial blooms present substantial challenges to managers and threaten ecological and public health. Although the majority of cyanobacterial bloom research and management focuses on factors that control bloom initiation, duration, toxicity, and geographical extent, relatively little research focuses on the role of loss processes in blooms and how these processes are regulated. Here, we define a loss process in terms of population dynamics as any process that removes cells from a population, thereby decelerating or reducing the development and extent of blooms. We review abiotic (e.g., hydraulic flushing and oxidative stress/UV light) and biotic factors (e.g., allelopathic compounds, infections, grazing, and resting cells/programmed cell death) known to govern bloom loss. We found that the dominant loss processes depend on several system specific factors including cyanobacterial genera-specific traits, in situ physicochemical conditions, and the microbial, phytoplankton, and consumer community composition. We also address loss processes in the context of bloom management and discuss perspectives and challenges in predicting how a changing climate may directly and indirectly affect loss processes on blooms. A deeper understanding of bloom loss processes and their underlying mechanisms may help to mitigate the negative consequences of cyanobacterial blooms and improve current management strategies

    Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen

    Get PDF
    The effectiveness of most cancer targeted therapies is short-lived. Tumors often develop resistance that might be overcome with drug combinations. However, the number of possible combinations is vast, necessitating data-driven approaches to find optimal patient-specific treatments. Here we report AstraZeneca’s large drug combination dataset, consisting of 11,576 experiments from 910 combinations across 85 molecularly characterized cancer cell lines, and results of a DREAM Challenge to evaluate computational strategies for predicting synergistic drug pairs and biomarkers. 160 teams participated to provide a comprehensive methodological development and benchmarking. Winning methods incorporate prior knowledge of drug-target interactions. Synergy is predicted with an accuracy matching biological replicates for >60% of combinations. However, 20% of drug combinations are poorly predicted by all methods. Genomic rationale for synergy predictions are identified, including ADAM17 inhibitor antagonism when combined with PIK3CB/D inhibition contrasting to synergy when combined with other PI3K-pathway inhibitors in PIK3CA mutant cells.Peer reviewe

    Shared and Disorder-Specific Event-Related Brain Oscillatory Markers of Attentional Dysfunction in ADHD and Bipolar Disorder.

    Get PDF
    Attention-deficit/hyperactivity disorder (ADHD) and bipolar disorder (BD) often present with overlapping symptoms and cognitive impairments, such as increased fluctuations in attentional performance measured by increased reaction-time variability (RTV). We previously provided initial evidence of shared and distinct event-related potential (ERP) impairments in ADHD and BD in a direct electrophysiological comparison, but no study to date has compared neural mechanisms underlying attentional impairments with finer-grained brain oscillatory markers. Here, we aimed to compare the neural underpinnings of impaired attentional processes in ADHD and BD, by examining event-related brain oscillations during a reaction-time task under slow-unrewarded baseline and fast-incentive conditions. We measured cognitive performance, ERPs and brain-oscillatory modulations of power and phase variability in 20 women with ADHD, 20 women with BD (currently euthymic) and 20 control women. Compared to controls, both ADHD and BD groups showed increased RTV in the baseline condition and increased RTV, theta phase variability and lower contingent negative variation in the fast-incentive condition. Unlike controls, neither clinical group showed an improvement from the slow-unrewarded baseline to the fast-incentive condition in attentional P3 amplitude or alpha power suppression. Most impairments did not differ between the disorders, as only an adjustment in beta suppression between conditions (lower in the ADHD group) distinguished between the clinical groups. These findings suggest shared impairments in women with ADHD and BD in cognitive and neural variability, preparatory activity and inability to adjust attention allocation and activation. These overlapping impairments may represent shared neurobiological mechanisms of attentional dysfunction in ADHD and BD, and potentially underlie common symptoms in both disorders.We thank all who made this research possible: The National Adult ADHD Clinic at the South London and Maudsley Hospital, Dr Helen Costello, Prof Sophia Frangou, Prof Anne Farmer, Jessica Deadman, Hannah Collyer, Sarah-Jane Gregori, and all participants who contributed their time to the study. Dr Giorgia Michelini was supported by a 1+3 PhD studentship awarded by the MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London (G9817803). This project was supported by an Economic and Social Research Council studentship to Dr Viryanaga Kitsune (ES/100971X/1). Dr Giorgia Michelini and Prof Philip Asherson are supported by generous grants from the National Institute for Health Research Biomedical Research Centre for Mental Health at King’s College London, Institute of Psychiatry, Psychology and Neuroscience and South London and Maudsley National Health Service (NHS) Foundation Trust. The funders had no role in the design and conduct of the study; collection, management, analysis, and interpretation of the data; preparation, review, or approval of the manuscript; and decision to submit the manuscript for publication

    Resting state EEG abnormalities in autism spectrum disorders

    Get PDF
    corecore