110 research outputs found

    Characterization of variable EST SSR markers for Norway spruce (Picea abies L.)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Norway spruce is widely distributed across Europe and the predominant tree of the Alpine region. Fast growth and the fact that timber can be harvested cost-effectively in relatively young populations define its status as one of the economically most important tree species of Northern Europe. In this study, EST derived simple sequence repeat (SSR) markers were developed for the assessment of putative functional diversity in Austrian Norway spruce stands.</p> <p>Results</p> <p>SSR sequences were identified by analyzing 14,022 publicly available EST sequences. Tri-nucleotide repeat motifs were most abundant in the data set followed by penta- and hexa-nucleotide repeats. Specific primer pairs were designed for sixty loci. Among these, 27 displayed polymorphism in a testing population of 16 <it>P. abies </it>individuals sampled across Austria and in an additional screening population of 96 <it>P. abies </it>individuals from two geographically distinct Austrian populations. Allele numbers per locus ranged from two to 17 with observed heterozygosity ranging from 0.075 to 0.99.</p> <p>Conclusions</p> <p>We have characterized variable EST SSR markers for Norway spruce detected in expressed genes. Due to their moderate to high degree of variability in the two tested screening populations, these newly developed SSR markers are well suited for the analysis of stress related functional variation present in Norway spruce populations.</p

    Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa

    Get PDF
    Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC(1)F(1) plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs

    Falls in the general elderly population: a 3- and 6- year prospective study of risk factors using data from the longitudinal population study 'Good ageing in Skane'.

    Get PDF
    Accidental falls in the elderly are a major health problem, despite extensive research on risk factors and prevention. Only a limited number of multifactorial, long-term prospective studies have been performed on risk factors for falls in the general elderly population. The aim of this study was to identify risk factors predicting falls in a general elderly population after three and six years, using a prospective design

    Beyond Structural Genomics for Plant Science

    Full text link
    corecore