909 research outputs found
Single cell transcriptional analysis reveals novel innate immune cell types
Single-cell analysis has the potential to provide us with a host of new knowledge about biological systems, but it comes with the challenge of correctly interpreting the biological information. While emerging techniques have made it possible to measure inter-cellular variability at the transcriptome level, no consensus yet exists on the most appropriate method of data analysis of such single cell data. Methods for analysis of transcriptional data at the population level are well established but are not well suited to single cell analysis due to their dependence on population averages. In order to address this question, we have systematically tested combinations of methods for primary data analysis on single cell transcription data generated from two types of primary immune cells, neutrophils and T lymphocytes. Cells were obtained from healthy individuals, and single cell transcript expression data was obtained by a combination of single cell sorting and nanoscale quantitative real time PCR (qRT-PCR) for markers of cell type, intracellular signaling, and immune functionality. Gene expression analysis was focused on hierarchical clustering to determine the existence of cellular subgroups within the populations. Nine combinations of criteria for data exclusion and normalization were tested and evaluated. Bimodality in gene expression indicated the presence of cellular subgroups which were also revealed by data clustering. We observed evidence for two clearly defined cellular subtypes in the neutrophil populations and at least two in the T lymphocyte populations. When normalizing the data by different methods, we observed varying outcomes with corresponding interpretations of the biological characteristics of the cell populations. Normalization of the data by linear standardization taking into account technical effects such as plate effects, resulted in interpretations that most closely matched biological expectations. Single cell transcription profiling provides evidence of cellular subclasses in neutrophils and leukocytes that may be independent of traditional classifications based on cell surface markers. The choice of primary data analysis method had a substantial effect on the interpretation of the data. Adjustment for technical effects is critical to prevent misinterpretation of single cell transcript data
The National Awareness and Early Diagnosis Initiative in England: assembling the evidence
A National Awareness and Early Diagnosis Initiative (NAEDI) has been established in England as part of the Government's strategy to improve cancer outcomes. One of the early priorities for this initiative has been to assemble the diverse evidence linking late diagnosis with poor survival and avoidable deaths. This supplement brings together new perspectives on existing research in this area together with findings from recently commissioned research. This paper describes a provisional model, the ‘NAEDI pathway', for testing hypotheses relating to late diagnosis and its impact. Key findings from other papers in this supplement are also highlighted
Socioeconomic inequalities in cancer survival in England after the NHS cancer plan
BACKGROUND: Socioeconomic inequalities in survival were observed for many cancers in England during 1981-1999. The NHS Cancer Plan (2000) aimed to improve survival and reduce these inequalities. This study examines trends in the deprivation gap in cancer survival after implementation of the Plan. MATERIALS AND METHOD: We examined relative survival among adults diagnosed with 1 of 21 common cancers in England during 1996-2006, followed up to 31 December 2007. Three periods were defined: 1996-2000 (before the Cancer Plan), 2001-2003 (initialisation) and 2004-2006 (implementation). We estimated the difference in survival between the most deprived and most affluent groups (deprivation gap) at 1 and 3 years after diagnosis, and the change in the deprivation gap both within and between these periods. RESULTS: Survival improved for most cancers, but inequalities in survival were still wide for many cancers in 2006. Only the deprivation gap in 1-year survival narrowed slightly over time. A majority of the socioeconomic disparities in survival occurred soon after a cancer diagnosis, regardless of the cancer prognosis. CONCLUSION: The recently observed reduction in the deprivation gap was minor and limited to 1-year survival, suggesting that, so far, the Cancer Plan has little effect on those inequalities. Our findings highlight that earlier diagnosis and rapid access to optimal treatment should be ensured for all socioeconomic groups
Time intervals from first symptom to treatment of cancer: a cohort study of 2,212 newly diagnosed cancer patients
<p>Abstract</p> <p>Background</p> <p>Delay in diagnosis of cancer may worsen prognosis. The aim of this study is to explore patient-, general practitioner (GP)- and system-related delay in the interval from first cancer symptom to diagnosis and treatment, and to analyse the extent to which delays differ by cancer type.</p> <p>Methods</p> <p>Population-based cohort study conducted in 2004-05 in the County of Aarhus, Denmark (640,000 inhabitants). Data were collected from administrative registries and questionnaires completed by GPs on 2,212 cancer patients newly diagnosed during a 1-year period. Median delay (in days) with interquartile interval (IQI) was the main outcome measure.</p> <p>Results</p> <p>Median total delay was 98 days (IQI 57-168). Most of the total delay stemmed from patient (median 21 days (7-56)) and system delay (median 55 days (32-93)). Median GP delay was 0 (0-2) days. Total delay was shortest among patients with ovarian (median 60 days (45-112)) and breast cancer (median 65 days (39-106)) and longest among patients with prostate (median 130 days (89-254)) and bladder cancer (median 134 days (93-181)).</p> <p>Conclusion</p> <p>System delay accounted for a substantial part of the total delay experienced by cancer patients. This points to a need for shortening clinical pathways if possible. A long patient delay calls for research into patient awareness of cancer. For all delay components, special focus should be given to the 4<sup>th </sup>quartile of patients with the longest time intervals and we need research into the quality of the diagnostic work-up process. We found large variations in delay for different types of cancer. Improvements should therefore target both the population at large and the specific needs associated with individual cancer types and their symptoms.</p
Eco-friendly one-pot synthesis of Prussian blue-embedded magnetic hydrogel beads for the removal of cesium from water
A simple one-step approach to fabricating Prussian blue-embedded magnetic hydrogel beads (PBMHBs) was fabricated for the effective magnetic removal of radioactive cesium (Cs-137) from water. Through the simple dropwise addition of a mixed aqueous solution of iron salts, commercial PB and polyvinyl alcohol (PVA) to an ammonium hydroxide (NH4OH) solution, the formation of hydrogel beads and the encapsulation of PB in beads were achieved in one pot through the gelation of PVA with in situ-formed iron oxide nanoparticles as the cross-linker. The obtained PB-MHBs, with 43.77 weight %of PB, were stable without releasing PB for up to 2 weeks and could be effectively separated from aqueous solutions by an external magnetic field, which is convenient for the large-scale treatment of Cs-contaminated water. Detailed Cs adsorption studies revealed that the adsorption isotherms and kinetics could be effectively described by the Langmuir isotherm model and the pseudo-second-order model, respectively. Most importantly, the PB-MHBs exhibited excellent selectivity for Cs-137 in (137)Cscontaminated simulated groundwater (55 Bq/g) with a high removal efficiency (>99.5%), and the effective removal of Cs-137 from real seawater by these PB-MHBs demonstrated the excellent potential of this material for practical application in the decontamination of Cs-137-contaminated seawate
Clinical significance of altered nm23-H1, EGFR, RB and p53 expression in bilharzial bladder cancer
<p>Abstract</p> <p>Background</p> <p>Clinical characterization of bladder carcinomas is still inadequate using the standard clinico-pathological prognostic markers. We assessed the correlation between <it>nm23-H1</it>, <it>Rb, EGFR </it>and <it>p53 </it>in relation to the clinical outcome of patients with muscle invasive bilharzial bladder cancer (MI-BBC).</p> <p>Methods</p> <p><it>nm23-H1</it>, <it>Rb, EGFR and p53 </it>expression was assessed in 59 MI-BBC patients using immunohistochemistry and reverse transcription (RT-PCR) and was correlated to the standard clinico-pathological prognostic factors, patient's outcome and the overall survival (OS) rate.</p> <p>Results</p> <p>Overexpression of <it>EGFR </it>and <it>p53 </it>proteins was detected in 66.1% and 35.6%; respectively. Loss of <it>nm23-H1</it>and <it>Rb </it>proteins was detected in 42.4% and 57.6%; respectively. Increased <it>EGFR and </it>loss of <it>nm23-H1 </it>RNA were detected in 61.5% and 36.5%; respectively. There was a statistically significant correlation between <it>p53 </it>and <it>EGFR </it>overexpression (<it>p </it>< 0.0001), <it>nm23 </it>loss (protein and RNA), lymph node status (<it>p </it>< 0.0001); between the incidence of local recurrence and <it>EGFR </it>RNA overexpression (p= 0.003) as well as between the incidence of metastasis and altered <it>Rb </it>expression (<it>p </it>= 0.026), <it>p53 </it>overexpression (<it>p </it>< 0.0001) and mutation (<it>p </it>= 0.04). Advanced disease stage correlated significantly with increased <it>EGFR </it>(protein and RNA) (<it>p </it>= 0.003 & 0.01), reduced <it>nm23-H1 </it>RNA (<it>p </it>= 0.02), altered <it>Rb </it>(<it>p </it>= 0.023), and <it>p53 </it>overexpression (<it>p </it>= 0.004). OS rates correlated significantly, in univariate analysis, with <it>p53 </it>overexpression (<it>p </it>= 0.011), increased <it>EGFR </it>(protein and RNA, <it>p </it>= 0.034&0.031), <it>nm23-H1 RNA </it>loss (<it>p </it>= 0.021) and aberrations of ≥ 2 genes. However, multivariate analysis showed that only high <it>EGFR </it>overexpression, metastatic recurrence, high tumor grade and the combination of ≥ 2 affected markers were independent prognostic factors.</p> <p>Conclusion</p> <p><it>nm23-H1, EGFR </it>and <it>p53 </it>could be used as prognostic biomarkers in MI-BBC patients. In addition to the standard pathological prognostic factors, a combination of these markers (≥ 2) has synergistic effects in stratifying patients into variable risk groups. The higher is the number of altered biomarkers, the higher will be the risk of disease progression and death.</p
Highly sensitive SPR response of Au/chitosan/graphene oxide nanostructured thin films toward Pb (II) ions
Optical sensors based on surface plasmon resonance (SPR) are utilized for detecting toxic heavy metals in solutions. To improve the sensitivity of SPR sensors, nanostructured thin films with active layers can be synthesized. In this study, the response to Pb (II) was measured and compared for SPR sensors incorporating gold–chitosan–graphene oxide (Au/CS/GO) nanostructured thin films and Au/CS films. The characterization of Au/CS/GO using FESEM analysis revealed a film composed of nanosheets with wrinkled, rough surfaces. The results from XRD analysis confirmed the successful incorporation of GO in the prepared films. Additionally, AFM analysis determined that the Au/CS/GO films had a root mean square (rms) roughness of 28.38 nm and were considerably rougher than the Au/CS films. Upon exposure to a 5 ppm Pb (II) ion solution, the Au/CS/GO films exhibited higher SPR sensitivity, as much as 1.11200 ppm−1, than Au/CS films, 0.77600 ppm−1. This enhancement of the SPR response was attributed to strong covalent bonding between CS and GO in these films. These results indicated that the Au/CS/GO films show potential for the detection of heavy metal pollution in environmental applications
- …