153 research outputs found

    Teleportation of a quantum state of a spatial mode with a single massive particle

    Full text link
    Mode entanglement exists naturally between regions of space in ultra-cold atomic gases. It has, however, been debated whether this type of entanglement is useful for quantum protocols. This is due to a particle number superselection rule that restricts the operations that can be performed on the modes. In this paper, we show how to exploit the mode entanglement of just a single particle for the teleportation of an unknown quantum state of a spatial mode. We detail how to overcome the superselection rule to create any initial quantum state and how to perform Bell state analysis on two of the modes. We show that two of the four Bell states can always be reliably distinguished, while the other two have to be grouped together due to an unsatisfied phase matching condition. The teleportation of an unknown state of a quantum mode thus only succeeds half of the time.Comment: 12 pages, 1 figure, this paper was presented at TQC 2010 and extends the work of Phys. Rev. Lett. 103, 200502 (2009

    Bevacizumab for the Treatment of Recurrent Glioblastoma

    Get PDF
    Despite advances in upfront therapy, the prognosis in the great majority of patients with glioblastoma (GBM) is poor as almost all recur and result in disease-related death. Glioblastoma are highly vascularized cancers with elevated expression levels of vascular endothelial growth factor (VEGF), the dominant mediator of angiogenesis. A compelling biologic rationale, a need for improved therapy, and positive results from studies of bevacizumab in other cancers led to the evaluation of bevacizumab in the treatment of recurrent GBM. Bevacizumab, a humanized monoclonal antibody that targets VEGF, has been shown to improve patient outcomes in combination with chemotherapy (most commonly irinotecan) in recurrent GBM, and on the basis of positive results in two prospective phase 2 studies, bevacizumab was granted accelerated approval by the US Food and Drug Administration (FDA) as a single agent in recurrent GBM. Bevacizumab therapy is associated with manageable, class-specific toxicity as severe treatment-related adverse events are observed in only a minority of patients. With the goal of addressing questions and controversies regarding the optimal use of bevacizumab, the objective of this review is to provide a summary of the clinical efficacy and safety data of bevacizumab in patients with recurrent GBM, the practical issues surrounding the administration of bevacizumab, and ongoing investigations of bevacizumab in managing GBM

    Density dependent hadron field theory for neutron stars with antikaon condensates

    Get PDF
    We investigate KK^- and Kˉ0\bar K^0 condensation in β\beta-equilibrated hyperonic matter within a density dependent hadron field theoretical model. In this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by the exchange of mesons. Density dependent meson-baryon coupling constants are obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn A nucleon-nucleon potential. It is found that the threshold of antikaon condensation is not only sensitive to the equation of state but also to antikaon optical potential depth. Only for large values of antikaon optical potential depth, KK^- condensation sets in even in the presence of negatively charged hyperons. The threshold of Kˉ0\bar K^0 condensation is always reached after KK^- condensation. Antikaon condensation makes the equation of state softer thus resulting in smaller maximum mass stars compared with the case without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review

    The Residual Stress Relaxation Behavior of Weldments During Cyclic Loading

    Get PDF
    Accurate measurement of residual stress is necessary to obtain reliable predictions of fatigue lifetime and enable estimation of time-to-facture for any given stress level. In this article, relaxation of welding residual stresses as a function of cyclic loading was documented on three common steels: AISI 1008, ASTM A572, and AISI 4142. Welded specimens were subjected to cyclic bending (R = 0.1) at different applied stresses, and the residual stress relaxation existing near the welds was measured as a function of cycles. The steels exhibited very different stress relaxation behaviors during cyclic loadings, which can be related to the differences in the microstructures of the specimens. A phenomenological model, which treats dislocation motion during cyclic loading as being analogous to creep of dislocations, is proposed for estimation of the residual stress relaxation

    Search for lepton-flavor violation at HERA

    Get PDF
    A search for lepton-flavor-violating interactions epμXe p \to \mu X and epτXe p\to \tau X has been performed with the ZEUS detector using the entire HERA I data sample, corresponding to an integrated luminosity of 130 pb^{-1}. The data were taken at center-of-mass energies, s\sqrt{s}, of 300 and 318 GeV. No evidence of lepton-flavor violation was found, and constraints were derived on leptoquarks (LQs) that could mediate such interactions. For LQ masses below s\sqrt{s}, limits were set on λeq1βq\lambda_{eq_1} \sqrt{\beta_{\ell q}}, where λeq1\lambda_{eq_1} is the coupling of the LQ to an electron and a first-generation quark q1q_1, and βq\beta_{\ell q} is the branching ratio of the LQ to the final-state lepton \ell (μ\mu or τ\tau) and a quark qq. For LQ masses much larger than s\sqrt{s}, limits were set on the four-fermion interaction term λeqαλqβ/MLQ2\lambda_{e q_\alpha} \lambda_{\ell q_\beta} / M_{\mathrm{LQ}}^2 for LQs that couple to an electron and a quark qαq_\alpha and to a lepton \ell and a quark qβq_\beta, where α\alpha and β\beta are quark generation indices. Some of the limits are also applicable to lepton-flavor-violating processes mediated by squarks in RR-Parity-violating supersymmetric models. In some cases, especially when a higher-generation quark is involved and for the process epτXe p\to \tau X , the ZEUS limits are the most stringent to date.Comment: 37 pages, 10 figures, Accepted by EPJC. References and 1 figure (Fig. 6) adde

    Multijet production in neutral current deep inelastic scattering at HERA and determination of alpha_s

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 < Q2 < 5000 GeV2. The data were taken at the ep collider HERA with centre-of-mass energy sqrt(s) = 318 GeV using the ZEUS detector and correspond to an integrated luminosity of 82.2 pb-1. Jets were identified in the Breit frame using the k_T cluster algorithm in the longitudinally invariant inclusive mode. Measurements of differential dijet and trijet cross sections are presented as functions of jet transverse energy E_{T,B}{jet}, pseudorapidity eta_{LAB}{jet} and Q2 with E_{T,B}{jet} > 5 GeV and -1 < eta_{LAB}{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant alpha_s(M_Z), determined from the ratio of the trijet to dijet cross sections, is alpha_s(M_Z) = 0.1179 pm 0.0013(stat.) {+0.0028}_{-0.0046}(exp.) {+0.0064}_{-0.0046}(th.)Comment: 22 pages, 5 figure

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.

    Photoproduction of D±D^{*\pm} mesons associated with a leading neutron

    Full text link
    The photoproduction of D±(2010)D^{*\pm} (2010) mesons associated with a leading neutron has been observed with the ZEUS detector in epep collisions at HERA using an integrated luminosity of 80 pb1^{-1}. The neutron carries a large fraction, {xL>0.2x_L>0.2}, of the incoming proton beam energy and is detected at very small production angles, {θn<0.8\theta_n<0.8 mrad}, an indication of peripheral scattering. The DD^* meson is centrally produced with pseudorapidity {η1.9|\eta| 1.9 GeV}, which is large compared to the average transverse momentum of the neutron of 0.22 GeV. The ratio of neutron-tagged to inclusive DD^* production is 8.85±0.93(stat.)0.61+0.48(syst.)%8.85\pm 0.93({\rm stat.})^{+0.48}_{-0.61}({\rm syst.})\% in the photon-proton center-of-mass energy range {130<W<280130 <W<280 GeV}. The data suggest that the presence of a hard scale enhances the fraction of events with a leading neutron in the final state.Comment: 28 pages, 4 figures, 2 table

    Measurement of the open-charm contribution to the diffractive proton structure function

    Get PDF
    Production of D*+/-(2010) mesons in diffractive deep inelastic scattering has been measured with the ZEUS detector at HERA using an integrated luminosity of 82 pb^{-1}. Diffractive events were identified by the presence of a large rapidity gap in the final state. Differential cross sections have been measured in the kinematic region 1.5 < Q^2 < 200 GeV^2, 0.02 < y < 0.7, x_{IP} < 0.035, beta 1.5 GeV and |\eta(D*+/-)| < 1.5. The measured cross sections are compared to theoretical predictions. The results are presented in terms of the open-charm contribution to the diffractive proton structure function. The data demonstrate a strong sensitivity to the diffractive parton densities.Comment: 35 pages, 11 figures, 6 table

    Measurement of beauty production in deep inelastic scattering at HERA

    Get PDF
    The beauty production cross section for deep inelastic scattering events with at least one hard jet in the Breit frame together with a muon has been measured, for photon virtualities Q^2 > 2 GeV^2, with the ZEUS detector at HERA using integrated luminosity of 72 pb^-1. The total visible cross section is sigma_b-bbar (ep -> e jet mu X) = 40.9 +- 5.7 (stat.) +6.0 -4.4 (syst.) pb. The next-to-leading order QCD prediction lies about 2.5 standard deviations below the data. The differential cross sections are in general consistent with the NLO QCD predictions; however at low values of Q^2, Bjorken x, and muon transverse momentum, and high values of jet transverse energy and muon pseudorapidity, the prediction is about two standard deviations below the data.Comment: 18 pages, 4 figure
    corecore