We investigate K− and Kˉ0 condensation in β-equilibrated
hyperonic matter within a density dependent hadron field theoretical model. In
this model, baryon-baryon and (anti)kaon-baryon interactions are mediated by
the exchange of mesons. Density dependent meson-baryon coupling constants are
obtained from microscopic Dirac Brueckner calculations using Groningen and Bonn
A nucleon-nucleon potential. It is found that the threshold of antikaon
condensation is not only sensitive to the equation of state but also to
antikaon optical potential depth. Only for large values of antikaon optical
potential depth, K− condensation sets in even in the presence of negatively
charged hyperons. The threshold of Kˉ0 condensation is always reached
after K− condensation. Antikaon condensation makes the equation of state
softer thus resulting in smaller maximum mass stars compared with the case
without any condensate.Comment: 20 pages, 7 figures; final version to appear in Physical Review