265 research outputs found

    Hadronic Probes of the Polarized Intrinsic Strangeness of the Nucleon

    Get PDF
    We have previously interpreted the various large apparent violations of the naive Okubo-Zweig-Iizuka (OZI) rule found in many channels in pˉp\bar{p}p annihilation at LEAR as evidence for an intrinsic polarized sˉs\bar{s}s component of the nucleon wave function. The model is further supported by new data from LEAR and elsewhere. Here we discuss in more detail the possible form of the sˉs\bar{s}s component of the nucleon wave function, interpret the new data and clarify the relative roles of strangeness shake-out and rearrangement, discuss whether alternative interpretations are still allowed by the new data, and propose more tests of the model.We have previously interpreted the various large apparent violations of the naive Okubo-Zweig-Iizuka (OZI) rule found in many channels in pˉp\bar{p}p annihilation at LEAR as evidence for an intrinsic polarized sˉs\bar{s}s component of the nucleon wave function. The model is further supported by new data from LEAR and elsewhere. Here we discuss in more detail the possible form of the sˉs\bar{s}s component of the nucleon wave function, interpret the new data and clarify the relative roles of strangeness shake-out and rearrangement, discuss whether alternative interpretations are still allowed by the new data, and propose more tests of the model.We have previously interpreted the various large apparent violations of the naive Okubo-Zweig-Iizuka (OZI) rule found in many channels in pˉp\bar{p}p annihilation at LEAR as evidence for an intrinsic polarized sˉs\bar{s}s component of the nucleon wave function. The model is further supported by new data from LEAR and elsewhere. Here we discuss in more detail the possible form of the sˉs\bar{s}s component of the nucleon wave function, interpret the new data and clarify the relative roles of strangeness shake-out and rearrangement, discuss whether alternative interpretations are still allowed by the new data, and propose more tests of the model.We have previously interpreted the various large apparent violations of the naive Okubo-Zweig-Iizuka (OZI) rule found in many channels in pˉp\bar{p}p annihilation at LEAR as evidence for an intrinsic polarized sˉs\bar{s}s component of the nucleon wave function. The model is further supported by new data from LEAR and elsewhere. Here we discuss in more detail the possible form of the sˉs\bar{s}s component of the nucleon wave function, interpret the new data and clarify the relative roles of strangeness shake-out and rearrangement, discuss whether alternative interpretations are still allowed by the new data, and propose more tests of the model.We have previously interpreted the various large apparent violations of the naı̈ve Okubo–Zweig–Iizuka (OZI) rule found in many channels in p ̄ p annihilation at LEAR as evidence for an intrinsic polarized s ̄ s component of the nucleon wave function. The model is further supported by new data from LEAR and elsewhere. Here we discuss in more detail the possible form of the s ̄ s component of the nucleon wave function, interpret the new data and clarify the relative roles of strangeness shake-out and rearrangement, discuss whether alternative interpretations are still allowed by the new data, and propose more tests of the model

    New Experimental Results on Strangeness Production

    Get PDF
    New experimental results on the production of ϕ\phi and f2(1525)f_2'(1525) mesons in the annihilation of stopped antiprotons are discussed. The explanation of these facts in the framework of the polarized strangeness model is considered.Comment: 10 pages, Latex, fig1.eps, espcrc1.sty. Invited talk at the Low Energy Antiproton Physics Conference, Villasimiu

    Hadronic Probes of the Polarized Intrinsic Strangeness of the Nucleon

    Full text link
    We have previously interpreted the various large apparent violations of the naive Okubo-Zweig-Iizuka (OZI) rule found in many channels in pˉp\bar{p}p annihilation at LEAR as evidence for an intrinsic polarized sˉs\bar{s}s component of the nucleon wave function. The model is further supported by new data from LEAR and elsewhere. Here we discuss in more detail the possible form of the sˉs\bar{s}s component of the nucleon wave function, interpret the new data and clarify the relative roles of strangeness shake-out and rearrangement, discuss whether alternative interpretations are still allowed by the new data, and propose more tests of the model.Comment: LaTeX, 31 page

    New data on OZI rule violation in bar{p}p annihilation at rest

    Full text link
    The results of a measurement of the ratio R = Y(phi pi+ pi-) / Y(omega pi+ pi-) for antiproton annihilation at rest in a gaseous and in a liquid hydrogen target are presented. It was found that the value of this ratio increases with the decreasing of the dipion mass, which demonstrates the difference in the phi and omega production mechanisms. An indication on the momentum transfer dependence of the apparent OZI rule violation for phi production from the 3S1 initial state was found.Comment: 11 pages, 3 PostScript figures, submitted to Physics Letter

    Abundant phi-Meson Production in pbar-p Annihilation at Rest and Strangeness in the Nucleon

    Full text link
    A large apparent violation of the OZI rule has recently been found in many channels in pbar-p annihilation LEAR. An interpretation of these data in terms of the "shake-out" and "rearrangement" of an intrinsic sbar-s component of the nucleon wave function is proposed. This gives a channel-dependent, non-universal modification of the naive OZI prediction. Within this approach, we interpret the strong excess of ϕ\phi production in S-wave pbar-p annihilations in terms of the polarization of the nucleon's sbar-s component indicated by deep inelastic lepton-nucleon scattering experiments. This interpretation could be tested by measurements of the f2(1525)/f2(1270)f_2'(1525)/f_2(1270) production ratio in P-wave annihilations and by experiments with polarized beams and polarized targets. We also propose a test of the intrinsic strangeness hypothesis in ϕ\phi production in high-momentum transfer processes, via a difference in constituent counting rules from gluon-mediated production.Comment: 18 pages (LateX) + 5 postscript figures encoded through uufile

    Transverse spin effects in hadron-pair production from semi-inclusive deep inelastic scattering

    Get PDF
    First measurements of azimuthal asymmetries in hadron-pair production in deep-inelastic scattering of muons on transversely polarised ^6LiD (deuteron) and NH_3 (proton) targets are presented. The data were taken in the years 2002-2004 and 2007 with the COMPASS spectrometer using a muon beam of 160 GeV/c at the CERN SPS. The asymmetries provide access to the transversity distribution functions, without involving the Collins effect as in single hadron production. The sizeable asymmetries measured on the NH_ target indicate non-vanishing u-quark transversity and two-hadron interference fragmentation functions. The small asymmetries measured on the ^6LiD target can be interpreted as indication for a cancellation of u- and d-quark transversities.Comment: 13 pages, 4 figures, updated to the published versio

    Leading order determination of the gluon polarisation from DIS events with high-p_T hadron pairs

    Get PDF
    We present a determination of the gluon polarisation Delta g/g in the nucleon, based on the longitudinal double-spin asymmetry of DIS events with a pair of large transverse-momentum hadrons in the final state. The data were obtained by the COMPASS experiment at CERN using a 160 GeV/c polarised muon beam scattering off a polarised ^6LiD target. The gluon polarisation is evaluated by a Neural Network approach for three intervals of the gluon momentum fraction x_g covering the range 0.04 < x_g < 0.27. The values obtained at leading order in QCD do not show any significant dependence on x_g. Their average is Delta g/g = 0.125 +/- 0.060 (stat.) +/- 0.063 (syst.) at x_g=0.09 and a scale of mu^2 = 3 (GeV/c)^2.Comment: 13 pages, 6 figures and 3 table

    Measurement of the Collins and Sivers asymmetries on transversely polarised protons

    Full text link
    The Collins and Sivers asymmetries for charged hadrons produced in deeply inelastic scattering on transversely polarised protons have been extracted from the data collected in 2007 with the CERN SPS muon beam tuned at 160 GeV/c. At large values of the Bjorken x variable non-zero Collins asymmetries are observed both for positive and negative hadrons while the Sivers asymmetry for positive hadrons is slightly positive over almost all the measured x range. These results nicely support the present theoretical interpretation of these asymmetries, in terms of leading-twist quark distribution and fragmentation functions.Comment: 9 Pages, 5 figure

    Quark helicity distributions from longitudinal spin asymmetries in muon-proton and muon-deuteron scattering

    Full text link
    Double-spin asymmetries for production of charged pions and kaons in semi-inclusive deep-inelastic muon scattering have been measured by the COMPASS experiment at CERN. The data, obtained by scattering a 160 GeV muon beam off a longitudinally polarised NH_3 target, cover a range of the Bjorken variable x between 0.004 and 0.7. A leading order evaluation of the helicity distributions for the three lightest quarks and antiquark flavours derived from these asymmetries and from our previous deuteron data is presented. The resulting values of the sea quark distributions are small and do not show any sizable dependence on x in the range of the measurements. No significant difference is observed between the strange and antistrange helicity distributions, both compatible with zero. The integrated value of the flavour asymmetry of the helicity distribution of the light-quark sea, \Delta u-bar - \Delta d-bar, is found to be slightly positive, about 1.5 standard deviations away from zero.Comment: 13 pages, 5 figure

    The Spin-dependent Structure Function of the Proton g_1^p and a Test of the Bjorken Sum Rule

    Get PDF
    The inclusive double-spin asymmetry, A_1^p, has been measured at COMPASS in deepinelastic polarised muon scattering off a large polarised NH3 target. The data, collected in the year 2007, cover the range Q2 > 1 (GeV/c)^2, 0.004 < x < 0.7 and improve the statistical precision of g_1^p(x) by a factor of two in the region x < 0.02. The new proton asymmetries are combined with those previously published for the deuteron to extract the non-singlet spin-dependent structure function g_1^NS(x,Q2). The isovector quark density, Delta_q_3(x,Q2), is evaluated from a NLO QCD fit of g_1^NS. The first moment of Delta_q3 is in good agreement with the value predicted by the Bjorken sum rule and corresponds to a ratio of the axial and vector coupling constants g_A/g_V = 1.28+-0.07(stat)+-0.10(syst).Comment: 12 pages, 5 figure
    corecore