18 research outputs found

    Systematic Review The Role of Platelet-Rich Plasma in Arthroscopic Rotator Cuff Repair: A Systematic Review With Quantitative Synthesis

    Get PDF
    Purpose: Despite the theoretic basis and interest in using platelet-rich plasma (PRP) to improve the potential for rotator cuff healing, there remains ongoing controversy regarding its clinical efficacy. The objective of this systematic review was to identify and summarize the available evidence to compare the efficacy of arthroscopic rotator cuff repair in patients with full-thickness rotator cuff tears who were concomitantly treated with PRP. Methods: We searched the Cochrane Central Register of Controlled Trials, Medline, Embase, and PubMed for eligible studies. Two reviewers selected studies for inclusion, assessed methodologic quality, and extracted data. Pooled analyses were performed using a random effects model to arrive at summary estimates of treatment effect with associated 95% confidence intervals. Results: Five studies (2 randomized and 3 nonrandomized with comparative control groups) met the inclusion criteria, with a total of 261 patients. Methodologic quality was uniformly sound as assessed by the Detsky scale and Newcastle-Ottawa Scale. Quantitative synthesis of all 5 studies showed that there was no statistically significant difference in the overall rate of rotator cuff retear between patients treated with PRP and those treated without PRP (risk ratio, 0.77; 95% confidence interval, 0.48 to 1.23). There were also no differences in the pooled Constant score; Simple Shoulder Test score; American Shoulder and Elbow Surgeons score; University of California, Los Angeles shoulder score; or Single Assessment Numeric Evaluation score. Conclusions: PRP does not have an effect on overall retear rates or shoulder-specific outcomes after arthroscopic rotator cuff repair. Additional well-designed randomized trials are needed to corroborate these findings. Level of Evidence: Level III, systematic review of Level I, II, and III studies

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory in MalargĂŒe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data

    Novel genetic loci associated with hippocampal volume

    Get PDF
    The hippocampal formation is a brain structure integrally involved in episodic memory, spatial navigation, cognition and stress responsiveness. Structural abnormalities in hippocampal volume and shape are found in several common neuropsychiatric disorders. To identify the genetic underpinnings of hippocampal structure here we perform a genome-wide association study (GWAS) of 33,536 individuals and discover six independent loci significantly associated with hippocampal volume, four of them novel. Of the novel loci, three lie within genes (ASTN2, DPP4 and MAST4) and one is found 200 kb upstream of SHH. A hippocampal subfield analysis shows that a locus within the MSRB3 gene shows evidence of a localized effect along the dentate gyrus, subiculum, CA1 and fissure. Further, we show that genetic variants associated with decreased hippocampal volume are also associated with increased risk for Alzheimer's disease (rg =-0.155). Our findings suggest novel biological pathways through which human genetic variation influences hippocampal volume and risk for neuropsychiatric illness

    Ultrahigh energy neutrinos at the pierre auger observatory

    Get PDF
    The observation of ultrahigh energy neutrinos (UHEs) has become a priority in experimental astroparticle physics. UHEs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going ) or in the Earth crust (Earth-skimming ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEs in the data collected with the ground array of the Pierre Auger Observatory.This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEs in the EeV range and above

    Description of Atmospheric Conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

    Get PDF
    Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malarg\"ue and averaged monthly models, the utility of the GDAS data is shown

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE Δ4 allele

    Ultrahigh energy neutrinos at the Pierre Auger observatory

    Get PDF
    The observation of ultrahigh energy neutrinos (UHEΜs) has become a priority in experimental astroparticle physics. UHEΜs can be detected with a variety of techniques. In particular, neutrinos can interact in the atmosphere (downward-going Μ) or in the Earth crust (Earth-skimming Μ), producing air showers that can be observed with arrays of detectors at the ground. With the surface detector array of the Pierre Auger Observatory we can detect these types of cascades. The distinguishing signature for neutrino events is the presence of very inclined showers produced close to the ground (i.e., after having traversed a large amount of atmosphere). In this work we review the procedure and criteria established to search for UHEΜs in the data collected with the ground array of the Pierre Auger Observatory. This includes Earth-skimming as well as downward-going neutrinos. No neutrino candidates have been found, which allows us to place competitive limits to the diffuse flux of UHEΜs in the EeV range and above.P. Abreu ... K. B. Barber ... J. A. Bellido ... R. W. Clay ... M. J. Cooper ... B. R. Dawson ... T. A. Harrison ... A. E. Herve ... V. C. Holmes ... J. Sorokin ... P. Wahrlich ... B. J. Whelan ... et al

    Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures

    Get PDF
    Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo

    The nature and origin of ultra high-energy cosmic rays

    Get PDF
    Contains fulltext : 103833.pdf (publisher's version ) (Open Access

    Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory

    Get PDF
    Contributing members: K.B. Barber, J.A. Bellido, R.W. Clay, M.J. Cooper, B.R. Dawson, T.D. Grubb, T.A. Harrison, A.E. Herve, G.C. Hill, V.C. Holmes, M. Malacari, S.J. Saffi, J. Sorokin, and P. Wahrlich for the University of Adelaide, Adelaide, S.A., AustraliaThe Pierre Auger Observatory in MalargĂŒe, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10 Âč⁞eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.The Pierre Auger Collaboratio
    corecore