5,456 research outputs found

    Associated Charm Production in Neutrino-Nucleus Interactions

    Full text link
    In this paper a search for associated charm production both in neutral and charged current ν\nu-nucleus interactions is presented. The improvement of automatic scanning systems in the {CHORUS} experiment allows an efficient search to be performed in emulsion for short-lived particles. Hence a search for rare processes, like the associated charm production, becomes possible through the observation of the double charm-decay topology with a very low background. About 130,000 ν\nu interactions located in the emulsion target have been analysed. Three events with two charm decays have been observed in the neutral-current sample with an estimated background of 0.18±\pm0.05. The relative rate of the associated charm cross-section in deep inelastic ν\nu interactions, σ(ccˉν)/σNCDIS=(3.622.42+2.95(stat)±0.54(syst))×103\sigma(c\bar{c}\nu)/\sigma_\mathrm{NC}^\mathrm{DIS}= (3.62^{+2.95}_{-2.42}({stat})\pm 0.54({syst}))\times 10^{-3} has been measured. One event with two charm decays has been observed in charged-current νμ\nu_\mu interactions with an estimated background of 0.18±\pm0.06 and the upper limit on associated charm production in charged-current interactions at 90% C.L. has been found to be σ(ccˉμ)/σCC<9.69×104\sigma (c\bar{c} \mu^-)/\sigma_\mathrm{CC} < 9.69 \times 10^{-4}.Comment: 10 pages, 4 figure

    Polarization phenomena in open charm photoproduction processes

    Get PDF
    We analyze polarization effects in associative photoproduction of pseudoscalar (Dˉ\bar{D}) charmed mesons in exclusive processes γ+NYc+Dˉ\gamma+ N\to Y_c +\bar{D}, Yc=Λc+Y_c=\Lambda_c^+, Σc\Sigma_c. Circularly polarized photons induce nonzero polarization of the YcY_c-hyperon with xx- and zz-components (in the reaction plane) and non vanishing asymmetries Ax{\cal A}_x and Az{\cal A}_z for polarized nucleon target. These polarization observables can be predicted in model-independent way for exclusive Dˉ\bar{D}-production processes in collinear kinematics. The T-even YcY_c-polarization and asymmetries for non-collinear kinematics can be calculated in framework of an effective Lagrangian approach. The depolarization coefficients DabD_{ab}, characterizing the dependence of the YcY_c-polarization on the nucleon polarization are also calculated.Comment: 36 pages 13 figure

    Leading order analysis of neutrino induced dimuon events in the CHORUS experiment

    Get PDF
    We present a leading order QCD analysis of a sample of neutrino induced charged-current events with two muons in the final state originating in the lead-scintillating fibre calorimeter of the CHORUS detector. The results are based on a sample of 8910 neutrino and 430 antineutrino induced opposite-sign dimuon events collected during the exposure of the detector to the CERN Wide Band Neutrino Beam between 1995 and 1998. % with Eμ1,Eμ2>5E_{\mu 1},E_{\mu 2} > 5 GeV and Q2>3Q^2 > 3 GeV2^2 collected %between 1995 and 1998. The analysis yields a value of the charm quark mass of \mc = (1.26\pm 0.16 \pm 0.09) \GeVcc and a value of the ratio of the strange to non-strange sea in the nucleon of κ=0.33±0.05±0.05\kappa = 0.33 \pm 0.05 \pm 0.05, improving the results obtained in similar analyses by previous experiments.Comment: Submitted to Nuclear Physics

    Physics with charm particles produced in neutrino interactions. A historical recollection

    Full text link
    Results obtained in neutrino unteractions on charm particles are presented

    Comparison of large-angle production of charged pions with incident protons on cylindrical long and short targets

    Get PDF
    The HARP collaboration has presented measurements of the double-differential pi+/pi- production cross-section in the range of momentum 100 MeV/c <= p 800 MeV/c and angle 0.35 rad <= theta <= 2.15 rad with proton beams hitting thin nuclear targets. In many applications the extrapolation to long targets is necessary. In this paper the analysis of data taken with long (one interaction length) solid cylindrical targets made of carbon, tantalum and lead is presented. The data were taken with the large acceptance HARP detector in the T9 beam line of the CERN PS. The secondary pions were produced by beams of protons with momenta 5 GeV/c, 8 GeV/c and 12 GeV/c. The tracking and identification of the produced particles were performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident protons were identified by an elaborate system of beam detectors. Results are obtained for the double-differential yields per target nucleon d2 sigma / dp dtheta. The measurements are compared with predictions of the MARS and GEANT4 Monte Carlo simulations.Comment: 43 pages, 20 figure

    Testing Deconfinement at High Isospin Density

    Full text link
    We study the transition from hadronic matter to a mixed phase of quarks and hadrons at high baryon and isospin densities reached in heavy ion collisions. We focus our attention on the role played by the nucleon symmetry energy at high density.In this respect the inclusion of a scalar isovector meson, the \delta-coupling, in the Hadron Lagrangian appears rather important. We study in detail the formation of a drop of quark matter in the mixed phase, and we discuss the effects on the quark drop nucleation probability of the finite size and finite time duration of the high density region. We find that, if the parameters of quark models are fixed so that the existence of quark stars is allowed, then the density at which a mixed phase starts forming drops dramatically in the range Z/A \sim 0.3--0.4. This opens the possibility to verify the Witten-Bodmer hypothesis on absolute stability of quark matter using ground-based experiments in which neutron-rich nuclei are employed. These experiments can also provide rather stringent constraints on the Equation of State (EoS) to be used for describing the pre-Supernova gravitational collapse. Consistent simulations of neutron rich heavy ion collisions are performed in order to show that even at relatively low energies, in the few AGeV range, the system can enter such unstable mixed phase. Some precursor observables are suggested, in particular a ``neutron trapping'' effect.Comment: 32 pages, 14 figures, elsart late

    Absolute Momentum Calibration of the HARP TPC

    Get PDF
    In the HARP experiment the large-angle spectrometer is using a cylindrical TPC as main tracking and particle identification detector. The momentum scale of reconstructed tracks in the TPC is the most important systematic error for the majority of kinematic bins used for the HARP measurements of the double-differential production cross-section of charged pions in proton interactions on nuclear targets at large angle. The HARP TPC operated with a number of hardware shortfalls and operational mistakes. Thus it was important to control and characterize its momentum calibration. While it was not possible to enter a direct particle beam into the sensitive volume of the TPC to calibrate the detector, a set of physical processes and detector properties were exploited to achieve a precise calibration of the apparatus. In the following we recall the main issues concerning the momentum measurement in the HARP TPC, and describe the cross-checks made to validate the momentum scale. As a conclusion, this analysis demonstrates that the measurement of momentum is correct within the published precision of 3%.Comment: To be published by JINS

    Large-angle production of charged pions by 3 GeV/c - 12.9 GeV/c protons on beryllium, aluminium and lead targets

    Get PDF
    Measurements of the double-differential π±\pi^{\pm} production cross-section in the range of momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \leq \theta < 2.15 \rad in proton--beryllium, proton--aluminium and proton--lead collisions are presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12.9 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was performed using a small-radius cylindrical time projection chamber (TPC) placed inside a solenoidal magnet. Incident particles were identified by an elaborate system of beam detectors. Results are obtained for the double-differential cross-sections at six incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc, 8.9 \GeVc (Be only), 12 \GeVc and 12.9 \GeVc (Al only)) and compared to previously available data

    Large-angle production of charged pions by 3 GeV/c - 12 GeV/c protons on carbon, copper and tin targets

    Get PDF
    A measurement of the double-differential π±\pi^{\pm} production cross-section in proton--carbon, proton--copper and proton--tin collisions in the range of pion momentum 100 \MeVc \leq p < 800 \MeVc and angle 0.35 \rad \le \theta <2.15 \rad is presented. The data were taken with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a target with a thickness of 5% of a nuclear interaction length. The tracking and identification of the produced particles was done using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc)

    Measurement of the production of charged pions by protons on a tantalum target

    Get PDF
    A measurement of the double-differential cross-section for the production of charged pions in proton--tantalum collisions emitted at large angles from the incoming beam direction is presented. The data were taken in 2002 with the HARP detector in the T9 beam line of the CERN PS. The pions were produced by proton beams in a momentum range from 3 \GeVc to 12 \GeVc hitting a tantalum target with a thickness of 5% of a nuclear interaction length. The angular and momentum range covered by the experiment (100 \MeVc \le p < 800 \MeVc and 0.35 \rad \le \theta <2.15 \rad) is of particular importance for the design of a neutrino factory. The produced particles were detected using a small-radius cylindrical time projection chamber (TPC) placed in a solenoidal magnet. Track recognition, momentum determination and particle identification were all performed based on the measurements made with the TPC. An elaborate system of detectors in the beam line ensured the identification of the incident particles. Results are shown for the double-differential cross-sections d2σ/dpdθ{{\mathrm{d}^2 \sigma}} / {{\mathrm{d}p\mathrm{d}\theta}} at four incident proton beam momenta (3 \GeVc, 5 \GeVc, 8 \GeVc and 12 \GeVc). In addition, the pion yields within the acceptance of typical neutrino factory designs are shown as a function of beam momentum. The measurement of these yields within a single experiment eliminates most systematic errors in the comparison between rates at different beam momenta and between positive and negative pion production.Comment: 49 pages, 31 figures. Version accepted for publication on Eur. Phys. J.
    corecore