68 research outputs found

    Mechanisms of extension at nonvolcanic margins: Evidence from the Galicia interior basin, west of Iberia

    Get PDF
    We have studied a nonvolcanic margin, the West Iberia margin, to understand how the mechanisms of thinning evolve with increasing extension. We present a coincident prestack depth‐migrated seismic section and a wide‐angle profile across a Mesozoic abandoned rift, the Galicia Interior Basin (GIB). The data show that the basin is asymmetric, with major faults dipping to the east. The velocity structure at both basin flanks is different, suggesting that the basin formed along a Paleozoic terrain boundary. The ratios of upper to lower crustal thickness and tectonic structure are used to infer the mechanisms of extension. At the rift flanks (stretching factor, β ≤ 2) the ratio is fairly constant, indicating that stretching of upper and lower crust was uniform. Toward the center of the basin (β ∼ 3.5–5.5), fault‐block size decreases as the crust thins and faults reach progressively deeper crustal levels, indicating a switch from ductile to brittle behavior of the lower crust. At β ≥ 3.5, faults exhume lower crustal rocks to shallow levels, creating an excess of lower crust within their footwalls. We infer that initially, extension occurred by large‐scale uniform pure shear but as extension increased, it switched to simple shear along deep penetrating faults as most of the crust was brittle. The predominant brittle deformation might have driven small‐scale flow (≤40 km) of the deepest crust to accommodate fault offsets, resulting in a smooth Moho topography. The GIB might provide a type example of nonvolcanic rifting of cold and thin crust

    Influence of cratonic lithosphere on the formation and evolution of flat slabs : insights from 3-D time-dependent modeling.

    Get PDF
    Several mechanisms have been suggested for the formation of flat slabs including buoyant features on the subducting plate, trenchward motion and thermal or cratonic structure of the overriding plate. Analysis of episodes of flat subduction indicate that not all flat slabs can be attributed to only one of these mechanisms and it is likely that multiple mechanisms work together to create the necessary conditions for flat slab subduction. In this study we examine the role of localized regions of cratonic lithosphere in the overriding plate in the formation and evolution of flat slabs. We explicitly build on previous models, by using time-dependent simulations with three-dimensional variation in overriding plate structure. We find that there are two modes of flat subduction: permanent underplating occurs when the slab is more buoyant (shorter or younger), while transient flattening occurs when there is more negative buoyancy (longer or older slabs). Our models show how regions of the slab adjacent to the subcratonic flat portion continue to pull the slab into the mantle leading to highly contorted slab shapes with apparent slab gaps beneath the craton. These results show how the interpretation of seismic images of subduction zones can be complicated by the occurrence of either permanent or transient flattening of the slab, and how the signature of a recent flat slab episode may persist as the slab resumes normal subduction. Our models suggest that permanent underplating of slabs may preferentially occur below thick and cold lithosphere providing a built-in mechanism for regeneration of cratons

    Response of a multi-domain continental margin to compression: study from seismic reflection-refraction and numerical modelling in the Tagus Abyssal Plain

    Get PDF
    The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling. (C) 2008 Elsevier B.V. All rights reserved.Instituto Nacional de Engenharia, Tecnologia e Inovacao(INETI); Landmark Graphics Corporation; Landmark University Grant Program; LATTEX/IDL [ISLF-5-32]; FEDERinfo:eu-repo/semantics/publishedVersio

    Crustal types and Tertiary tectonic evolution of the Alborán sea, western Mediterranean

    Get PDF
    Multichannel seismic reflection images across the transition between the east Alborán and the Algero-Balearic basins show how crustal thickness decreases from about 5 s two-way traveltime (TWTT, ∼15 km thick) in the west (east Alborán basin) to ∼2 s TWTT typical of oceanic crust (∼6 km thick) in the east (Algero-Balearic basin). We have differentiated three different crustal domains in this transition, mainly on the basis of crustal thickness and seismic signature. Boundaries between the three crustal domains are transitional and lack evidence for major faults. Tilted blocks related to extension are very scarce and all sampled basement outcrops are volcanic, suggesting a strong relationship between magmatism and crustal structure. Stratigraphic correlation of lithoseismic units with sedimentary units of southeastern Betic basins indicates that sediments onlap igneous basement approximately at 12 Ma in the eastern area and at 8 Ma in the western area. Linking seismic crustal structure with magmatic geochemical evidence suggests that the three differentiated crustal domains may represent, from west to east, thin continental crust modified by arc magmatism, magmatic-arc crust, and oceanic crust. Middle to late Miocene arc and oceanic crust formation in the east Alborán and Algero-Balearic basins, respectively, occurred during westward migration of the Gibraltar accretionary wedge and shortening in the Betic-Rif foreland basins. Arc magmatism and associated backarc oceanic crust formation were related to early to middle Miocene subduction and rollback of the Flysch Trough oceanic basement. Subduction of this narrow slab beneath the Alborán basin was coeval with collision of the Alborán domain with the Iberian and African passive margins and subsequent subcontinental-lithosphere edge delamination along the Betic-Rif margins

    The long-term strength of Europe and its implications for plate-forming processes.

    No full text
    Field-based geological studies show that continental deformation preferentially occurs in young tectonic provinces rather than in old cratons. This partitioning of deformation suggests that the cratons are stronger than surrounding younger Phanerozoic provinces. However, although Archaean and Phanerozoic lithosphere differ in their thickness and composition, their relative strength is a matter of much debate. One proxy of strength is the effective elastic thickness of the lithosphere, Te. Unfortunately, spatial variations in Te are not well understood, as different methods yield different results. The differences are most apparent in cratons, where the 'Bouguer coherence' method yields large Te values (> 60 km) whereas the 'free-air admittance' method yields low values (< 25 km). Here we present estimates of the variability of Te in Europe using both methods. We show that when they are consistently formulated, both methods yield comparable Te values that correlate with geology, and that the strength of old lithosphere (> or = 1.5 Gyr old) is much larger (mean Te > 60 km) than that of younger lithosphere (mean Te < 30 km). We propose that this strength difference reflects changes in lithospheric plate structure (thickness, geothermal gradient and composition) that result from mantle temperature and volatile content decrease through Earth's history

    Lithospheric extension from rifting to continental breakup at magma-poor margins: rheology, serpentinisation and symmetry

    No full text
    The symmetry or asymmetry of the process of continental breakup has been much debated over the last 20 years, with various authors proposing asymmetric simple shear models, others advocating more symmetric, pure shear models and some combinations of the two. The unroofing of vast expanses of sub-continental mantle at non-volcanic margins has led some authors to argue in favour of simple shear models, but supporting evidence is lacking. Subsidence evidence from conjugate margin pairs is equivocal, and the detailed crustal and lithospheric structure of such pairs not generally well enough known to draw firm conclusions. In the Porcupine Basin, where the final stages of break-up are preserved, the development of structural asymmetry is demonstrable, and apparently related to late stage coupling of the crust to the mantle following the complete embrittlement of the crust. This agrees with theoretical modelling results, which predict that asymmetric models can develop only on a lithospheric scale when the crust and mantle are tightly coupled. However, whether such asymmetry is maintained during continued exhumation of the mantle is unclear

    Sequential faulting explains the asymmetry and extension discrepancy of conjugate margins

    No full text
    7 pages, 5 figuresDuring early extension, cold continental lithosphere thins and subsides, creating rift basins. If extension continues to final break-up, the split and greatly thinned plates subside deep below sea level to form a conjugate pair of rifted margins. Although basins and margins are ubiquitous structures, the deformation processes leading from moderately extended basins to highly stretched margins are unclear, as studies consistently report that crustal thinning is greater than extension caused by brittle faulting. This extension discrepancy might arise from differential stretching of brittle and ductile crustal layers, but that does not readily explain the typical asymmetric structure of conjugate margins-in cross-section, one margin displays gradual thinning accompanied by large faults, and the conjugate margin displays abrupt thinning but smaller-scale faulting. Whole-crust detachments, active from early in the rifting, could in theory create both thinning and asymmetry, but are mechanically problematical. Furthermore, the extension discrepancy occurs at both conjugate margins, leading to the apparent contradiction that both seem to be upper plates to a detachment fault. Alternative models propose that much brittle extension is undetected because of seismic imaging limitations caused either by subseismic-resolution faulting, invisible deformation along top-basement 100-km-scale detachments or the structural complexity of cross-cutting arrays of faults. Here we use depth-migrated seismic images to accurately measure fault extension and compare it with crustal thinning. The observations are used to create a balanced kinematic model of rifting that resolves the extension discrepancy by producing both fault-controlled crustal thinning which progresses from a rift basin to the asymmetric structure, and extreme thinning of conjugate rifted margins. Contrary to current wisdom, the observations support the idea that thinning is to a first degree explained by simple Andersonian faulting that is unambiguously visible in seismic dataThis is a publication of the Department of Earth Sciences of the Royal Holloway, University of London. C.R.R. has been supported by the Kaleidoscope project, funded by Repsol, and by the Spanish National Project Medoc of the Ministry of Science and InnovationPeer Reviewe
    corecore