72 research outputs found
Responsible aquaculture and trophic level implications to global fish supply
Hunger and malnutrition remain among the most devastating problems facing the world’s poor and needy, and continue to dominate the health and well-being of the world’s poorest nations. Moreover, there are growing doubts as to the long-term sustainability of many existing food production systems, including capture fisheries and aquaculture, to meet the future increasing global demands.Of the different agricultural food production systems, aquaculture (the farming of aquatic animals and plants) is widely viewed as an important weapon in the global fight against malnutrition and poverty, particularly within developing countries where over 93% of global production is currently produced, providing in most instances an affordable and a much needed source of high quality animal protein, lipids, and other essential nutrients. The current article compares for the first time the development and growth of the aquaculture sector and capture fisheries by analyzing production by mean trophic level. Whereas marine capture fisheries have been feeding the world on high trophic level carnivorous fish species since mankind has been fishing the oceans, aquaculture production within developing countries has focused, by and large, on the production of lower trophic level species. However, like capture fisheries, aquaculture focus within economically developed countries has been essentially on the culture of high value-, high trophic level-carnivorous species. The long term sustainability of these production systems is questionable unless the industry can reduce its dependence upon capture fisheries for sourcing raw materials for feed formulation and seed inputs. In line with above, the article calls for the urgent need for all countries to adopt and adhere to the principles and guidelines for responsible aquaculture of the FAO Code of Conduct for Responsible Fisheries
Comment on 'Water footprint of marine protein consumptionâaquaculture's link to agriculture'
In their article âFreshwater savings from marine protein consumptionâ (2014 Environ. Res. Lett. 9 014005), Gephart and her colleagues analyzed how consumption of marine animal protein rather than terrestrial animal protein leads to reduced freshwater allocation. They concluded that future water savings from increased marine fish consumption would be possible. We find the approach interesting and, if they only considered marine capture fisheries, their analysis would be quite straightforward and show savings of freshwater. However, both capture fisheries and aquaculture are considered in the analysis, and the fact that marine aquaculture is assumed to have a zero freshwater usage, makes the analysis incomplete. Feed resources used in marine aquaculture contain agriculture compounds, which results in a freshwater footprint. To correct this shortcoming we complement the approach taken by Gephart and her colleagues by estimating the freshwater footprint (WF) for crops used for feeding marine aquaculture. We show that this is critically important when estimating the true freshwater footprint for marine aquaculture, and that it will be increasingly so in the future. We also further expand on aquacultureâs dependency on fish resources, as this was only briefly touched upon in the paper. We do so because changes in availability of fish resources will play an important role for feed development and thereby for the future freshwater footprint of marine aquaculture
Global Plastic Pollution Observation System to Aid Policy
Plastic pollution has become one of the most pressing environmental challenges and has received commensurate widespread attention. Although it is a top priority for policymakers and scientists alike, the knowledge required to guide decisions, implement mitigation actions, and assess their outcomes remains inadequate. We argue that an integrated, global monitoring system for plastic pollution is needed to provide comprehensive, harmonized data for environmental, societal, and economic assessments. The initial focus on marine ecosystems has been expanded here to include atmospheric transport and terrestrial and freshwater ecosystems. An earth-system-level plastic observation system is proposed as a hub for collecting and assessing the scale and impacts of plastic pollution across a wide array of particle sizes and ecosystems including air, land, water, and biota and to monitor progress toward ameliorating this problem. The proposed observation system strives to integrate new information and to identify pollution hotspots (i.e., production facilities, cities, roads, ports, etc.) and expands monitoring from marine environments to encompass all ecosystem types. Eventually, such a system will deliver knowledge to support public policy and corporate contributions to the relevant United Nations (UN) Sustainable Development Goals (SDGs)
Are Chinese consumers at risk due to exposure to metals in crayfish? A bioaccessibility-adjusted probabilistic risk assessment
Freshwater crayfish, the world's third largest crustacean species, has been reported to accumulate high levels of metals, while the current knowledge of potential risk associated with crayfish consumption lags behind that of finfish. We provide the first estimate of human health risk associated with crayfish (Procambarus clarkii) consumption in China, the world's largest producer and consumer of crayfish. We performed Monte Carlo Simulation on a standard risk model parameterized with local data on metal concentrations, bioaccessibility (phi), crayfish consumption rate, and consumer body mass. Bioaccessibility of metals in crayfish was found to be variable (68-95%) and metal-specific, suggesting a potential influence of metal bioaccessibility on effective metal intake. However, sensitivity analysis suggested risk of metals via crayfish consumption was predominantly explained by consumption rate (explaining >92% of total risk estimate variability), rather than metals concentration, bioaccessibility, or body mass. Mean metal concentrations (As, Cd, Cu, Ni, Pb, Se and Zn) in surveyed crayfish samples from 12 provinces in China conformed to national safety standards. However, risk calculation of phi-modified hazard quotient (HQ) and hazard index (HI) suggested that crayfish metals may pose a health risk for very high rate consumers, with a HI of over 24 for the highest rate consumers. Additionally, the phi-modified increased lifetime risk (ILTR) for carcinogenic effects due to the presence of As was above the acceptable level (10(-5)) for both the median (ILTR = 2.5 x 10(-5)) and 90th percentile (ILTR = 1.8 x 10(-4)), highlighting the relatively high risk of As in crayfish. Our results suggest a need to consider crayfish when assessing human dietary exposure to metals and associated health risks, especially for high crayfish-consuming populations, such as in China, USA and Sweden.HZ by the National
Natural Science Foundation of China (41273087). LN was supported
by European Union Marie Curie Actions, Grant FP People 2010 âIRSES
Electroacrossâ and BG by the SAGE-IGERT Fellowship (US National
Science Foundation)
Dealing with the effects of ocean acidification on coral reefs in the Indian Ocean and Asia
© 2019 Elsevier B.V. Shallow coral reefs provide food, income, well-being and coastal protection to countries around the Indian Ocean and Asia. These reefs are under threat due to many anthropogenic stressors including pollution, sedimentation, overfishing, sea surface warming and habitat destruction. Ocean acidification interacts with these factors to exacerbate stress on coral reefs. Effective solutions in tackling the impact of ocean acidification require a thorough understanding of the current adaptive capacity of each nation to deal with the consequences. Here, we aim to help the decision-making process for policy makers in dealing with these future challenges at the regional and national levels. We recommend that a series of evaluations be made to understand the current status of each nation in this region in dealing with ocean acidification impacts by assessing the climate policy, education, policy coherence, related research activities, adaptive capacity of reef-dependent economic sectors and local management. Indonesia and Thailand, are selected as case studies. We also highlight general recommendations on mitigation and adaptation to ocean acidification impacts on coral reefs and propose well-designed research program would be necessary for developing a more targeted policy agenda in this region
An attainable global vision for conservation and human well-being
A hopeful vision of the future is a world in which both people and nature thrive, but there is little evidence to support the feasibility of such a vision. We used a global, spatially explicit, systems modeling approach to explore the possibility of meeting the demands of increased populations and economic growth in 2050 while simultaneously advancing multiple conservation goals. Our results demonstrate that if, instead of âbusiness as usualâ practices, the world changes how and where food and energy are produced, this could help to meet projected increases in food (54%) and energy (56%) demand while achieving habitat protection (>50% of natural habitat remains unconverted in most biomes globally; 17% area of each ecoregion protected in each country), reducing atmospheric greenhouse-gas emissions consistent with the Paris Climate Agreement (â€1.6°C warming by 2100), ending overfishing, and reducing water stress and particulate air pollution. Achieving this hopeful vision for people and nature is attainable with existing technology and consumption patterns. However, success will require major shifts in production methods and an ability to overcome substantial economic, social, and political challenges
Considerations for management strategy evaluation for small pelagic fishes
Management strategy evaluation (MSE) is the state-of-the-art approach for testing and comparing management strategies in a way that accounts for multiple sources of uncertainty (e.g. monitoring, estimation, and implementation). Management strategy evaluation can help identify management strategies that are robust to uncertainty about the life history of the target species and its relationship to other species in the food web. Small pelagic fish (e.g. anchovy, herring and sardine) fulfil an important ecological role in marine food webs and present challenges to the use of MSE and other simulation-based evaluation approaches. This is due to considerable stochastic variation in their ecology and life history, which leads to substantial observation and process uncertainty. Here, we summarize the current state of MSE for small pelagic fishes worldwide. We leverage expert input from ecologists and modellers to draw attention to sources of process and observation uncertainty for small pelagic species, providing examples from geographical regions where these species are ecologically, economically and culturally important. Temporal variation in recruitment and other life-history rates, spatial structure and movement, and species interactions are key considerations for small pelagic fishes. We discuss tools for building these into the MSE process, with examples from existing fisheries. We argue that model complexity should be informed by management priorities and whether ecosystem information will be used to generate dynamics or to inform reference points. We recommend that our list of considerations be used in the initial phases of the MSE process for small pelagic fishes or to build complexity on existing single-species models.publishedVersio
Pharmaceutical pollution of the world's rivers
Environmental exposure to active pharmaceutical ingredients (APIs) can have negative effects on the health of ecosystems and humans. While numerous studies have monitored APIs in rivers, these employ different analytical methods, measure different APIs, and have ignored many of the countries of the world. This makes it difficult to quantify the scale of the problem from a global perspective. Furthermore, comparison of the existing data, generated for different studies/regions/continents, is challenging due to the vast differences between the analytical methodologies employed. Here, we present a global-scale study of API pollution in 258 of the world's rivers, representing the environmental influence of 471.4 million people across 137 geographic regions. Samples were obtained from 1,052 locations in 104 countries (representing all continents and 36 countries not previously studied for API contamination) and analyzed for 61 APIs. Highest cumulative API concentrations were observed in sub-Saharan Africa, south Asia, and South America. The most contaminated sites were in low- to middle-income countries and were associated with areas with poor wastewater and waste management infrastructure and pharmaceutical manufacturing. The most frequently detected APIs were carbamazepine, metformin, and caffeine (a compound also arising from lifestyle use), which were detected at over half of the sites monitored. Concentrations of at least one API at 25.7% of the sampling sites were greater than concentrations considered safe for aquatic organisms, or which are of concern in terms of selection for antimicrobial resistance. Therefore, pharmaceutical pollution poses a global threat to environmental and human health, as well as to delivery of the United Nations Sustainable Development Goals
- âŠ