1,224 research outputs found

    Asteroseismology of the planet-hosting star mu Arae. II. Seismic analysis

    Full text link
    As most exoplanets host stars, HD 160691 (alias mu Ara) presents a metallicity excess in its spectrum compared to stars without detected planets. This excess may be primordial, in which case the star would be completely overmetallic, or it may be due to accretion in the early phases of planetary formation, in which case it would be overmetallic only in its outer layers. As discussed in a previous paper (Bazot and Vauclair 2004), seismology can help choosing between the two scenarios. This star was observed during eight nights with the spectrograph HARPS at La Silla Observatory. Forty three p-modes have been identified (Bouchy et al. 2005). In the present paper, we discuss the modelisation of this star. We computed stellar models iterated to present the same observable parameters (luminosity, effective temperature, outer chemical composition) while the internal structure was different according to the two extreme assumptions : original overmetallicity or accretion. We show that in any case the seismic constraints lead to models in complete agreement with the external parameters deduced from spectroscopy and from the Hipparcos parallax (L and Teff). We discuss the tests which may lead to a choice between the two typical scenarios. We show that the ``small separation'' seem to give a better fit for the accretion case than for the overmetallic case, but in spite of the very good data the uncertainties are still too large to conclude. We discuss the observations which would be needed to go further and solve this question.Comment: 16 pages, 8 figures, accepted in A&

    A planet-sized transiting star around OGLE-TR-122 - Accurate mass and radius near the Hydrogen-burning limit

    Full text link
    We report the discovery and characterisation of OGLE-TR-122b, the smallest main-sequence star to date with a direct radius determination. OGLE-TR-122b transits around its solar-type primary every 7.3-days. With M=0.092+-0.009 Mo and R=0.120 +0.024-0.013 Ro, it is by far the smallest known eclipsing M-dwarf. The derived mass and radius for OGLE-TR-122b are in agreement with the theoretical expectations. OGLE-TR-122b is the first observational evidence that stars can indeed have radii comparable or even smaller than giant planets. In such cases, the photometric signal is exactly that of a transiting planet and the true nature of the companion can only be determined with high-resolution spectroscopy.Comment: 4 pages, 3 figures, A&A letters, in Press. Revise

    SOPHIE velocimetry of Kepler transit candidates III. KOI-423b: an 18 Mjup transiting companion around an F7IV star

    Full text link
    We report the strategy and results of our radial velocity follow-up campaign with the SOPHIE spectrograph (1.93-m OHP) of four transiting planetary candidates discovered by the Kepler space mission. We discuss the selection of the candidates KOI-428, KOI-410, KOI-552, and KOI-423. KOI-428 was established as a hot Jupiter transiting the largest and the most evolved star discovered so far and is described by Santerne et al. (2011a). KOI-410 does not present radial velocity change greater than 120 m/s, which allows us to exclude at 3 sigma a transiting companion heavier than 3.4 Mjup. KOI-552b appears to be a transiting low-mass star with a mass ratio of 0.15. KOI-423b is a new transiting companion in the overlapping region between massive planets and brown dwarfs. With a radius of 1.22 +- 0.11 Rjup and a mass of 18.0 +- 0.92 Mjup, KOI-423b is orbiting an F7IV star with a period of 21.0874 +- 0.0002 days and an eccentricity of 0.12 +- 0.02. From the four selected Kepler candidates, at least three of them have a Jupiter-size transiting companion, but two of them are not in the mass domain of Jupiter-like planets. KOI-423b and KOI-522b are members of a growing population of known massive companions orbiting close to an F-type star. This population currently appears to be absent around G-type stars, possibly due to their rapid braking and the engulfment of their companions by tidal decay.Comment: 9 pages, 12 figures, accepted in A&

    Detection of Solar-like Oscillations in the G7 Giant Star xi Hya

    Get PDF
    We report the firm discovery of solar-like oscillations in a giant star. We monitored the star xi Hya (G7III) continuously during one month with the CORALIE spectrograph attached to the 1.2m Swiss Euler telescope. The 433 high-precision radial-velocity measurements clearly reveal multiple oscillation frequencies in the range 50 - 130 uHz, corresponding to periods between 2.0 and 5.5 hours. The amplitudes of the strongest modes are slightly smaller than 2 m/s. Current model calculations are compatible with the detected modes.Comment: 4 pages, 4 figures, accepted for publication as a letter in A&

    The non-detection of oscillations in Procyon by MOST: is it really a surprise?

    Full text link
    We argue that the non-detection of oscillations in Procyon by the MOST satellite reported by Matthews et al. (2004) is fully consistent with published ground-based velocity observations of this star. We also examine the claims that the MOST observations represent the best photometric precision so far reported in the literature by about an order of magnitude and are the most sensitive data set for asteroseismology available for any star other than the Sun. These statements are not correct, with the most notable exceptions being observations of oscillations in alpha Cen A that are far superior. We further disagree that the hump of excess power seen repeatedly from velocity observations of Procyon can be explained as an artefact caused by gaps in the data. The MOST observations failed to reveal oscillations clearly because their noise level is too high, possibly from scattered Earthlight in the instrument. We did find an excess of strong peaks in the MOST amplitude spectrum that is inconsistent with a simple noise source such as granulation, and may perhaps indicate oscillations at roughly the expected level.Comment: 6 pages, accepted for publication in A&A Letter

    p-mode frequencies in solar-like stars : I. Procyon A

    Full text link
    As a part of an on-going program to explore the signature of p-modes in solar-like stars by means of high-resolution absorption lines pectroscopy, we have studied four stars (alfaCMi, etaCas A, zetaHer A and betaVir). We present here new results from two-site observations of Procyon A acquired over twelve nights in 1999. Oscillation frequencies for l=1 and l=0 (or 2) p-modes are detected in the power spectra of these Doppler shift measurements. A frequency analysis points out the dificulties of the classical asymptotic theory in representing the p-mode spectrum of Procyon A

    The `666' collaboration on OGLE transits: I. Accurate radius of the planets OGLE-TR-10b and OGLE-TR-56b with VLT deconvolution photometry

    Full text link
    Transiting planets are essential to study the structure and evolution of extra-solar planets. For that purpose, it is important to measure precisely the radius of these planets. Here we report new high-accuracy photometry of the transits of OGLE-TR-10 and OGLE-TR-56 with VLT/FORS1. One transit of each object was covered in Bessel V and R filters, and treated with the deconvolution-based photometry algorithm DECPHOT, to ensure accurate millimagnitude light curves. Together with earlier spectroscopic measurements, the data imply a radius of 1.22 +0.12-0.07 R_J for OGLE-TR-10b and 1.30 +- 0.05 R_J for OGLE-TR-56b. A re-analysis of the original OGLE photometry resolves an earlier discrepancy about the radius of OGLE-TR-10. The transit of OGLE-TR-56 is almost grazing, so that small systematics in the photometry can cause large changes in the derived radius. Our study confirms both planets as inflated hot Jupiters, with large radii comparable to that of HD 209458bb and at least two other recently discovered transiting gas giants.Comment: Fundamental updates compared to previous version; accepted for publication in Astronomy & Astrophysic

    Ground-based photometry of the 21-day Neptune HD106315c

    Full text link
    Space-based transit surveys such as K2 and TESS allow the detection of small transiting planets with orbital periods beyond 10 days. Few of these warm Neptunes are currently known around stars bright enough to allow for detailed follow-up observations dedicated to their atmospheric characterization. The 21-day period and 3.95 RR_\oplus planet HD106315c has been discovered based on the observation of two of its transits by K2. We have observed HD106315 using the 1.2m Euler telescope equipped with the EulerCam camera on two instances to confirm the transit using broad band photometry and refine the planetary period. Based on two observed transits of HD106315c, we detect its \sim1 mmag transit and obtain a precise measurement of the planetary ephemerids, which are critical for planning further follow-up observations. We have used the attained precision together with the predicted yield from the TESS mission to evaluate the potential for ground-based confirmation of Neptune-sized planets found by TESS. We find that 1-meter-class telescopes on the ground equipped with precise photometers could substantially contribute to the follow-up of 162 TESS candidates orbiting stars with magnitudes of V14V \leq 14. Out of these, 74 planets orbit stars with V12V \leq 12 and 12 planets orbit V10V \leq 10, which makes these candidates high-priority objects for atmospheric characterization with high-end instrumentation.Comment: Published in A&A letters, 4 pages, 3 figure

    SOPHIE velocimetry of Kepler transit candidates VII. A false-positive rate of 35% for Kepler close-in giant exoplanet candidates

    Full text link
    The false-positive probability (FPP) of Kepler transiting candidates is a key value for statistical studies of candidate properties. A previous investigation of the stellar population in the Kepler field has provided an estimate for the FPP of less than 5% for most of the candidates. We report here the results of our radial velocity observations on a sample of 46 Kepler candidates with a transit depth greater than 0.4%, orbital period less than 25 days and host star brighter than Kepler magnitude 14.7. We used the SOPHIE spectrograph mounted on the 1.93-m telescope at the Observatoire de Haute-Provence to establish the nature of the transiting candidates. In this sample, we found five undiluted eclipsing binaries, two brown dwarfs, six diluted eclipsing binaries, and nine new transiting planets that complement the 11 already published planets. The remaining 13 candidates were not followed-up or remain unsolved due to photon noise limitation or lack of observations. From these results we computed the FPP for Kepler close-in giant candidates to be 34.8% \pm 6.5%. We aimed to investigate the variation of the FPP for giant candidates with the longer orbital periods and found that it should be constant for orbital periods between 10 and 200 days. This significant disagrees with the previous estimates. We discuss the reasons for this discrepancy and the possible extension of this work toward smaller planet candidates. Finally, taking the false-positive rate into account, we refined the occurrence rate of hot jupiters from the Kepler data.Comment: Accepted in A&A. 16 pages including 4 online material pages. 6 figures and 1 tabl

    SOPHIE velocimetry of Kepler transit candidates. V. The three hot Jupiters KOI-135b, KOI-204b and KOI-203b (alias Kepler-17b)

    Full text link
    We report the discovery of two new transiting hot Jupiters, KOI-135b and KOI-204b, that were previously identified as planetary candidates by Borucki et al. 2011, and, independently of the Kepler team, confirm the planetary nature of Kepler-17b, recently announced by Desert et al. 2011. Radial-velocity measurements, taken with the SOPHIE spectrograph at the OHP, and Kepler photometry (Q1 and Q2 data) were used to derive the orbital, stellar and planetary parameters. KOI-135b and KOI-204b orbit their parent stars in 3.02 and 3.25 days, respectively. They have approximately the same radius, Rp=1.20+/-0.06 R_jup and 1.24+/-0.07 R_jup, but different masses Mp=3.23+/-0.19 M_jup and 1.02+/-0.07 M_jup. As a consequence, their bulk densities differ by a factor of four, rho_p=2.33+/-0.36 g.cm^-3 (KOI-135b) and 0.65+/-0.12 g.cm-3 (KOI-204b). Our SOPHIE spectra of Kepler-17b, used both to measure the radial-velocity variations and determine the atmospheric parameters of the host star, allow us to refine the characterisation of the planetary system. In particular we found the radial-velocity semi-amplitude and the stellar mass to be respectively slightly smaller and larger than Desert et al. These two quantities, however, compensate and lead to a planetary mass fully consistent with Desert et al.: our analysis gives Mp=2.47+/-0.10 M_jup and Rp=1.33+/-0.04 R_jup. We found evidence for a younger age of this planetary system, t<1.8 Gyr, which is supported by both evolutionary tracks and gyrochronology. Finally, we confirm the detection of the optical secondary eclipse and found also the brightness phase variation with the Q1 and Q2 Kepler data. The latter indicates a low redistribution of stellar heat to the night side (<16% at 1-sigma), if the optical planetary occultation comes entirely from thermal flux. The geometric albedo is A_g<0.12 (1-sigma).Comment: submitted to Astronomy and Astrophysic
    corecore