842 research outputs found

    A new model for the structure of the DACs and SACs regions in the Oe and Be stellar atmospheres

    Full text link
    In this paper we present a new mathematical model for the density regions where a specific spectral line and its SACs/DACs are created in the Oe and Be stellar atmospheres. In the calculations of final spectral line function we consider that the main reasons of the line broadening are the rotation of the density regions creating the spectral line and its DACs/SACs, as well as the random motions of the ions. This line function is able to reproduce the spectral feature and it enables us to calculate some important physical parameters, such as the rotational, the radial and the random velocities, the Full Width at Half Maximum, the Gaussian deviation, the optical depth, the column density and the absorbed or emitted energy. Additionally, we can calculate the percentage of the contribution of the rotational velocity and the ions' random motions of the DACs/SACs regions to the line broadening. Finally, we present two tests and three short applications of the proposed model.Comment: 9 pages, 5 figures, accepted for publication in PAS

    Experimental Control and Characterization of Autophagy in Drosophila

    Get PDF
    Insects such as the fruit fly Drosophila melanogaster, which fundamentally reorganize their body plan during metamorphosis, make extensive use of autophagy for their normal development and physiology. In the fruit fly, the hepatic/adipose organ known as the fat body accumulates nutrient stores during the larval feeding stage. Upon entering metamorphosis, as well as in response to starvation, these nutrients are mobilized through a massive induction of autophagy, providing support to other tissues and organs during periods of nutrient deprivation. High levels of autophagy are also observed in larval tissues destined for elimination, such as the salivary glands and larval gut. Drosophila is emerging as an important system for studying the functions and regulation of autophagy in an in vivo setting. In this chapter we describe reagents and methods for monitoring autophagy in Drosophila, focusing on the larval fat body. We also describe methods for experimentally activating and inhibiting autophagy in this system and discuss the potential for genetic analysis in Drosophila to identify novel genes involved in autophagy

    Relativistic many-body calculations of electric-dipole matrix elements, lifetimes and polarizabilities in rubidium

    Full text link
    Electric-dipole matrix elements for ns-n'p, nd-n'p, and 6d-4f transitions in Rb are calculated using a relativistic all-order method. A third-order calculation is also carried out for these matrix elements to evaluate the importance of the high-order many-body perturbation theory contributions. The all-order matrix elements are used to evaluate lifetimes of ns and np levels with n=6, 7, 8 and nd levels with n=4, 5, 6 for comparison with experiment and to provide benchmark values for these lifetimes. The dynamic polarizabilities are calculated for ns states of rubidium. The resulting lifetime and polarizability values are compared with available theory and experiment.Comment: 8 pages, 2 figure

    Optimizing the fast Rydberg quantum gate

    Get PDF
    The fast phase gate scheme, in which the qubits are atoms confined in sites of an optical lattice, and gate operations are mediated by excitation of Rydberg states, was proposed by Jaksch et al. Phys. Rev. Lett. 85, 2208 (2000). A potential source of decoherence in this system derives from motional heating, which occurs if the ground and Rydberg states of the atom move in different optical lattice potentials. We propose to minimize this effect by choosing the lattice photon frequency \omega so that the ground and Rydberg states have the same frequency-dependent polarizability \alpha(omega). The results are presented for the case of Rb.Comment: 5 pages, submitted to PR

    Approximations for radiative cooling and heating in the solar chromosphere

    Full text link
    Context. The radiative energy balance in the solar chromosphere is dominated by strong spectral lines that are formed out of LTE. It is computationally prohibitive to solve the full equations of radiative transfer and statistical equilibrium in 3D time dependent MHD simulations. Aims. To find simple recipes to compute the radiative energy balance in the dominant lines under solar chromospheric conditions. Methods. We use detailed calculations in time-dependent and 2D MHD snapshots to derive empirical formulae for the radiative cooling and heating. Results. The radiative cooling in neutral hydrogen lines and the Lyman continuum, the H and K and intrared triplet lines of singly ionized calcium and the h and k lines of singly ionized magnesium can be written as a product of an optically thin emission (dependent on temperature), an escape probability (dependent on column mass) and an ionization fraction (dependent on temperature). In the cool pockets of the chromosphere the same transitions contribute to the heating of the gas and similar formulae can be derived for these processes. We finally derive a simple recipe for the radiative heating of the chromosphere from incoming coronal radiation. We compare our recipes with the detailed results and comment on the accuracy and applicability of the recipes.Comment: accepted for publication in Astronomy & Astrophysic

    Prospects for precision measurements of atomic helium using direct frequency comb spectroscopy

    Full text link
    We analyze several possibilities for precisely measuring electronic transitions in atomic helium by the direct use of phase-stabilized femtosecond frequency combs. Because the comb is self-calibrating and can be shifted into the ultraviolet spectral region via harmonic generation, it offers the prospect of greatly improved accuracy for UV and far-UV transitions. To take advantage of this accuracy an ultracold helium sample is needed. For measurements of the triplet spectrum a magneto-optical trap (MOT) can be used to cool and trap metastable 2^3S state atoms. We analyze schemes for measuring the two-photon 23S43S2^3S \to 4^3S interval, and for resonant two-photon excitation to high Rydberg states, 23S33Pn3S,D2^3S \to 3^3P \to n^3S,D. We also analyze experiments on the singlet-state spectrum. To accomplish this we propose schemes for producing and trapping ultracold helium in the 1^1S or 2^1S state via intercombination transitions. A particularly intriguing scenario is the possibility of measuring the 11S21S1^1S \to 2^1S transition with extremely high accuracy by use of two-photon excitation in a magic wavelength trap that operates identically for both states. We predict a ``triple magic wavelength'' at 412 nm that could facilitate numerous experiments on trapped helium atoms, because here the polarizabilities of the 1^1S, 2^1S and 2^3S states are all similar, small, and positive.Comment: Shortened slightly and reformatted for Eur. Phys. J.

    Cascade coherence transfer and magneto-optical resonances at 455 nm excitation of Cesium

    Full text link
    We present and experimental and theoretical study of nonlinear magneto-optical resonances observed in the fluorescence to the ground state from the 7P_{3/2} state of cesium, which was populated directly by laser radiation at 455 nm, and from the 6P_{1/2} and 6P_{3/2} states, which were populated via cascade transitions that started from the 7P_{3/2} state and passed through various intermediate states. The laser-induced fluorescence (LIF) was observed as the magnetic field was scanned through zero. Signals were recorded for the two orthogonal, linearly polarized components of the LIF. We compared the measured signals with the results of calculations from a model that was based on the optical Bloch equations and averaged over the Doppler profile. This model was adapted from a model that had been developed for D_1 and D_2 excitation of alkali metal atoms. The calculations agree quite well with the measurements, especially when taking into account the fact that some experimental parameters were only estimated in the model.Comment: small changes to text of previous version; 12 pages, 8 figure

    Non-LTE line formation for heavy elements in four very metal-poor stars

    Full text link
    Stellar parameters and abundances of Na, Mg, Al, K, Ca, Sr, Ba, and Eu are determined for four very metal-poor stars (-2.66 < [Fe/H] < -2.15) based on non-LTE line formation and analysis of high-resolution (R ~60000 and 90000) high signal-to-noise (S/N > 200) observed spectra. A model atom for H I is presented. An effective temperature was obtained from the Balmer Halpha and Hbeta line wing fits, the surface gravity from the Hipparcos parallax if available and the non-LTE ionization balance between Ca I and Ca II. Based on the hyperfine structure affecting the Ba II resonance line, the fractional abundance of the odd isotopes of Ba was derived for HD 84937 and HD 122563 from a requirement that Ba abundances from the resonance line and subordinate lines of Ba II must be equal. For each star, non-LTE leads to a consistency of Teff from two Balmer lines and to a higher temperature compared to the LTE case, by up to 60 K. Non-LTE effects are important in spectroscopic determination of surface gravity from Ca I/Ca II. For each star with a known trigonometric gravity, non-LTE abundances from the lines of two ionization stages agree within the error bars, while a difference in the LTE abundances consists of 0.23 dex to 0.40 dex for different stars. Departures from LTE are found to be significant for the investigated atoms, and they strongly depend on stellar parameters. For HD 84937, the Eu/Ba ratio is consistent with the relative solar system r-process abundances, and the fraction of the odd isotopes of Ba, f_odd, equals 0.43+-0.14. The latter can serve as a constraint on r-process models. The lower Eu/Ba ratio and f_odd = 0.22+-0.15 found for HD 122563 suggest that the s-process or the unknown process has contributed significantly to the Ba abundance in this star.Comment: accepted for publication in A&A, November 16, 200

    A primordial star in the heart of the Lion

    Full text link
    Context: The discovery and chemical analysis of extremely metal-poor stars permit a better understanding of the star formation of the first generation of stars and of the Universe emerging from the Big Bang. aims: We report the study of a primordial star situated in the centre of the constellation Leo (SDSS J102915+172027). method: The star, selected from the low resolution-spectrum of the Sloan Digital Sky Survey, was observed at intermediate (with X-Shooter at VLT) and at high spectral resolution (with UVES at VLT). The stellar parameters were derived from the photometry. The standard spectroscopic analysis based on 1D ATLAS models was completed by applying 3D and non-LTE corrections. results: An iron abundance of [Fe/H]=--4.89 makes SDSS J102915+172927 one of the lowest [Fe/H] stars known. However, the absence of measurable C and N enhancements indicates that it has the lowest metallicity, Z<= 7.40x10^{-7} (metal-mass fraction), ever detected. No oxygen measurement was possible. conclusions: The discovery of SDSS J102915+172927 highlights that low-mass star formation occurred at metallicities lower than previously assumed. Even lower metallicity stars may yet be discovered, with a chemical composition closer to the composition of the primordial gas and of the first supernovae.Comment: To be published in A&
    corecore