297 research outputs found

    Estimating Electric Fields from Vector Magnetogram Sequences

    Full text link
    Determining the electric field (E-field) distribution on the Sun's photosphere is essential for quantitative studies of how energy flows from the Sun's photosphere, through the corona, and into the heliosphere. This E-field also provides valuable input for data-driven models of the solar atmosphere and the Sun-Earth system. We show how Faraday's Law can be used with observed vector magnetogram time series to estimate the photospheric E-field, an ill-posed inversion problem. Our method uses a "poloidal-toroidal decomposition" (PTD) of the time derivative of the vector magnetic field. The PTD solutions are not unique; the gradient of a scalar potential can be added to the PTD E-field without affecting consistency with Faraday's Law. We present an iterative technique to determine a potential function consistent with ideal MHD evolution; but this E-field is also not a unique solution to Faraday's Law. Finally, we explore a variational approach that minimizes an energy functional to determine a unique E-field, similar to Longcope's "Minimum Energy Fit". The PTD technique, the iterative technique, and the variational technique are used to estimate E-fields from a pair of synthetic vector magnetograms taken from an MHD simulation; and these E-fields are compared with the simulation's known electric fields. These three techniques are then applied to a pair of vector magnetograms of solar active region NOAA AR8210, to demonstrate the methods with real data.Comment: 41 pages, 10 figure

    The Effects of Rotation on the Evolution of Rising Omega-loops in a Stratified Model Convection Zone

    Get PDF
    We present three-dimensional MHD simulations of buoyant magnetic flux tubes that rise through a stratified model convection zone in the presence of solar rotation. The equations of MHD are solved in the anelastic approximation, and the results are used to determine the effects of solar rotation on the dynamic evolution an Omega-loop. We find that the Coriolis force significantly suppresses the degree of fragmentation at the apex of the loop during its ascent toward the photosphere. If the initial axial field strength of the tube is reduced, then, in the absence of forces due to convective motions, the degree of apex fragmentation is also reduced. We show that the Coriolis force slows the rise of the tube, and induces a retrograde flow in both the magnetized and unmagnetized plasma of an emerging active region. Observationally, we predict that this flow will appear to originate at the leading polarity, and will terminate at the trailing polarity.Comment: 25 pages, 8 figures, ApJ in pres

    An Investigation of Salmonine Reproduction and Factors Limiting Their Production in Sandy Creek, Monroe County, New York

    Get PDF
    Sandy Creek is stocked annually with salmonines by the New York Department of Environmental Conservation. A good recreational fishery has been established during fall spawning migrations but spawning success and juvenile survival have not been researched. My study sought to 1) determine the extent of use of Sandy Creek by adult and juvenile salmonines in 2006 and 2007, 2) assess the creek\u27s potential for sustaining spawning and early life history requirements, and 3) estimate salmonine production in Sandy Creek and potential recruitment to Lake Ontario. Adult Chinook and coho salmon, brown trout and rainbow trout/steelhead were captured and spawned in Sandy Creek. Suitable spawning habitat is generally restricted to the upper reaches of Sandy Creek\u27s east and west branches because bedrock and mud substrates preclude redd construction elsewhere. Habitat and physiochemical conditions are conducive for healthy egg and larval development through winter and spring. Juvenile Chinook and coho salmon, brown trout and rainbow trout/steelhead caught in Sandy Creek were mostly in the east and west branches. Chinook salmon grew rapidly, reaching a total length of ~ 100 mm between emergence in March and out migration to Lake Ontario in June. Coho salmon and rainbow trout/steelhead occupied the headwater region of the east branch of Sandy Creek; few juvenile brown trout were captured. Water temperatures exceeded the upper thermal thresholds (\u3e28 °C) of most salmonine species throughout most of Sandy Creek during July and August. Areal extrapolation of CPUE suggests that Sandy Creek can produce ~ 6,900 juvenile salmonines/creek ha but only the headwater regions provide suitable habitat and physiochemical conditions for salmonine survival year round. Reforestation of the riparian zone and subsequent decreases in soil erosion and summer water temperature would increase salmonine production in Sandy Creek; however, the predominantly bedrock substrate prevents spawning in 90°/o of its main stem. Sandy Creek also supports a healthy, diverse warmwater fish community

    Hard X-ray and UV Observations of the 2005 January 15 Two-ribbon Flare

    Full text link
    In this paper, we present comprehensive analysis of a two-ribbon flare observed in UV 1600{\AA} by Transition Region and Coronal Explorer and in HXRs by Reuven Ramaty High Energy Solar Spectroscopic Imager. HXR (25-100 keV) imaging observations show two kernels of size (FWHM) 15?? moving along the two UV ribbons. We find the following results. (1) UV brightening is substantially enhanced wherever and whenever the compact HXR kernel is passing, and during the HXR transit across a certain region, the UV count light curve in that region is temporally correlated with the HXR total flux light curve. After the passage of the HXR kernel, the UV light curve exhibits smooth monotonical decay. (2)We measure the apparent motion speed of the HXR sources and UV ribbon fronts, and decompose the motion into parallel and perpendicular motions with respect to the magnetic polarity inversion line (PIL). It is found that HXR kernels and UV fronts exhibit similar apparent motion patterns and speeds. The parallel motion dominates during the rise of the HXR emission, and the perpendicular motion starts and dominates at the HXR peak, the apparent motion speed being 10-40 km s-1. (3) We also find that UV emission is characterized by a rapid rise correlated with HXRs, followed by a long decay on timescales of 15-30 minutes. The above analysis provides evidence that UV brightening is primarily caused by beam heating, which also produces thick-target HXR emission. The thermal origin of UV emission cannot be excluded, but would produce weaker heating by one order of magnitude. The extended UV ribbons in this event are most likely a result of sequential reconnection along the PIL, which produces individual flux tubes (post-flare loops), subsequent non-thermal energy release and heating in these flux tubes, and then the very long cooling time of the transition region at the feet of these flux tubes.Comment: 8 figure

    Simulation of Flux Emergence from the Convection Zone to the Corona

    Full text link
    Here, we present numerical simulations of magnetic flux buoyantly rising from a granular convection zone into the low corona. We study the complex interaction of the magnetic field with the turbulent plasma. The model includes the radiative loss terms, non-ideal equations of state, and empirical corona heating. We find that the convection plays a crucial role in shaping the morphology and evolution of the emerging structure. The emergence of magnetic fields can disrupt the convection pattern as the field strength increases, and form an ephemeral region-like structure, while weak magnetic flux emerges and quickly becomes concentrated in the intergranular lanes, i.e. downflow regions. As the flux rises, a coherent shear pattern in the low corona is observed in the simulation. In the photosphere, both magnetic shearing and velocity shearing occur at a very sharp polarity inversion line (PIL). In a case of U-loop magnetic field structure, the field above the surface is highly sheared while below it is relaxed

    Sewage disposal improvements at Pontiac, Michigan

    Get PDF
    The existing East Boulevard Sewage Disposal Plant consists of a set of bar screens, a grit chamber, a battery of three Imhoff tanks, eight trickling filter units, of the rotary-distributor type, and three secondary settling tanks. The plant was designed for a population of 52,500 in 1919 by Clarence W. Hubbell, Consulting Engineer. At the present time the plant shows evidence of loading beyond its capacity, the distress of the Imhoff tanks being particularly acute --Present Sewage Disposal Facilities, page 5

    Buildup of Magnetic Shear and Free Energy During Flux Emergence and Cancellation

    Full text link
    We examine a simulation of flux emergence and cancellation, which shows a complex sequence of processes that accumulate free magnetic energy in the solar corona essential for the eruptive events such as coronal mass ejections (CMEs), filament eruptions and flares. The flow velocity at the surface and in the corona shows a consistent shearing pattern along the polarity inversion line (PIL), which together with the rotation of the magnetic polarities, builds up the magnetic shear. Tether-cutting reconnection above the PIL then produces longer sheared magnetic field lines that extend higher into the corona, where a sigmoidal structure forms. Most significantly, reconnection and upward energy-flux transfer are found to occur even as magnetic flux is submerging and appears to cancel at the photosphere. A comparison of the simulated coronal field with the corresponding coronal potential field graphically shows the development of nonpotential fields during the emergence of the magnetic flux and formation of sunspots

    Dynamic Coupling of Convective Flows and Magnetic Field during Flux Emergence

    Full text link
    We simulate the buoyant rise of a magnetic flux rope from the solar convection zone into the corona to better understand the energetic coupling of the solar interior to the corona. The magnetohydrodynamic model addresses the physics of radiative cooling, coronal heating and ionization, which allow us to produce a more realistic model of the solar atmosphere. The simulation illustrates the process by which magnetic flux emerges at the photosphere and coalesces to form two large concentrations of opposite polarities. We find that the large-scale convective motion in the convection zone is critical to form and maintain sunspots, while the horizontal converging flows in the near surface layer prevent the concentrated polarities from separating. The foot points of the sunspots in the convection zone exhibit a coherent rotation motion, resulting in the increasing helicity of the coronal field. Here, the local configuration of the convection causes the convergence of opposite polarities of magnetic flux with a shearing flow along the polarity inversion line. During the rising of the flux rope, the magnetic energy is first injected through the photosphere by the emergence, followed by energy transport by horizontal flows, after which the energy is subducted back to the convection zone by the submerging flows
    • …
    corecore