484 research outputs found

    Casimir-Polder effect with thermally excited surfaces

    Full text link
    We take a closer look at the fundamental Casimir-Polder interaction between quantum particles and dispersive dielectric surfaces with surface polariton or plasmon resonances. Linear response theory shows that in the near field, van der Waals, regime the free energy shift of a particle contains a thermal component that depends exclusively on the population/excitation of the evanescent surface polariton/plasmon modes. Our work makes evident the link between particle surface interaction and near field thermal emission and demonstrates how this can be used to engineer Casimir-Polder forces. We also examine how the exotic effects of surface waves are washed out as the distance from the surface increases. In the case of molecules or excited state atoms, far field approximations result in a classical dipole-dipole interaction which depends on the surface reflectivity and the mean number of photons at the frequency of the atomic/molecular transition. Finally we present numerical results for the CP interaction between Cs atoms and various dielectric surfaces with a single polariton resonance and discuss the implications of temperature and retardation effects for specific spectroscopic experiments.Comment: accepted in Phys. Rev.

    Detection of Spiral photons in Quantum Optics

    Full text link
    We show that a new type of photon detector, sensitive to the gradients of electromagnetic fields, should be a useful tool to characterize the quantum properties of spatially-dependent optical fields. As a simple detector of such a kind, we propose using magnetic dipole or electric quadrupole transitions in atoms or molecules and apply it to the detection of spiral photons in Laguerre-Gauss (LG) beams. We show that LG beams are not true hollow beams, due to the presence of magnetic fields and gradients of electric fields on beam axis. This approach paves the way to an analysis at the quantum level of the spatial structure and angular momentum properties of singular light beams.Comment: 5 pages, 4 figure

    Spectroscopy in Extremely Thin Vapor Cells : Sensitivity Issues

    Full text link
    This communication focuses on sensitivity issues - a long-time concern of J. Hall- in the spectroscopic analysis of Extremely Thin Cell of dilute vapor. With these small and often submicrometric slices of vapor, the most uncommon features are the relatively small number of interacting atoms, and the fact that essential results are already obtained in the frame of linear spectroscopy.Comment: Proceedings of the John Hall symposium (2005) to appea

    Anisotropic Atom-Surface Interactions in the Casimir-Polder Regime

    Full text link
    The distance-dependence of the anisotropic atom-wall interaction is studied. The central result is the 1/z^6 quadrupolar anisotropy decay in the retarded Casimir-Polder regime. Analysis of the transition region between non-retarded van der Waals regime (in 1/z^3) and Casimir-Polder regime shows that the anisotropy cross-over occurs at very short distances from the surface, on the order of 0.03 Lambda, where Lambda is the atom characteristic wavelength. Possible experimental verifications of this distance dependence are discussed.Comment: 5 pages, 2 figure

    Doppler-free approach to optical pumping dynamics in the 6S1/25D5/26S_{1/2}- 5D_{5/2} electric quadrupole transition of Cesium vapor

    Full text link
    The 6S1/25D5/26S_{1/2}-5D_{5/2} electric quadrupole transition is investigated in Cesium vapor at room temperature via nonlinear Doppler-free 6P-6S-5D three-level spectroscopy. Frequency-resolved studies of individual E2 hyperfine lines allow one to analyze optical pumping dynamics, polarization selection rules and line intensities. It opens the way to studies of transfer of light orbital angular momentum to atoms, and the influence of metamaterials on E2 line spectra.Comment: 4 pages, 5 figures, minor updates from previous versio

    Atom-Wall interaction

    Full text link
    This chapter deals with atom-wall interaction occurring in the "long-range" regime (typical distances: 1-1000 nm), when the electromagnetic fluctuations of an isolated atom are modified by the vicinity with a surface. Various regimes of interaction are discussed in an Introductory part, from Cavity Quantum ElectroDynamics modifications of the spontaneous emission, to Casimir effect, with emphasis on the atom-surface van der Waals interaction, characterized as a near-field interaction governed by a z-3 dependence. The major part of the Chapter focuses on the experimental measurements of this van der Waals interaction, reviewing various recent techniques, and insists upon optical techniques, and notably selective reflection spectroscopy which is particularly well-suited when excited atoms are considered. A review of various experiments illustrates the specific effects associated with a resonant coupling between the atomic excitation and surface modes, from van der Waals repulsion to surface-induced resonant transfer, and with anisotropy effects, including metastability transfer induced by a quadrupole contribution in the interaction. The effects of a thermal excitation of the surface -with a possible remote energy transfer to an atom-, and of interaction with nanobodies -which are intrinsically non planar- are notably discussed among the prospects.Comment: \`{a} paraitre dans : Advances in Atomic Molecular and Optical Physics, vol.50, B. Bederson and H. Walther eds., Academic Pres

    Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction

    Full text link
    Metamaterials are fascinating tools that can structure not only surface plasmons and electromagnetic waves but also electromagnetic vacuum fluctuations. The possibility of shaping the quantum vacuum is a powerful concept that ultimately allows engineering the interaction between macroscopic surfaces and quantum emitters such as atoms, molecules or quantum dots. The long-range atom-surface interaction, known as Casimir-Polder interaction, is of fundamental importance in quantum electrodynamics but also attracts a significant interest for platforms that interface atoms with nanophotonic devices. Here we perform a spectroscopic selective reflection measurement of the Casimir-Polder interaction between a Cs(6P_{3/2}) atom and a nanostructured metallic planar metamaterial. We show that by engineering the near-field plasmonic resonances of the metamaterial, we can successfully tune the Casimir-Polder interaction, demonstrating both a strong enhancement and reduction with respect to its non-resonant value. We also show an enhancement of the atomic spontaneous emission rate due to its coupling with the evanescent modes of the nanostructure. Probing excited state atoms next to nontrivial tailored surfaces is a rigorous test of quantum electrodynamics. Engineering Casimir-Polder interactions represents a significant step towards atom trapping in the extreme near field, possibly without the use of external fields.Comment: 21 pages, 9 figure

    Coupling of atomic quadrupole transitions with resonant surface plasmons

    Full text link
    We report on the coupling of an electric quadrupole transition in atom with plasmonic excitation in a nanostructured metallic metamaterial. The quadrupole transition at 685 nm in the gas of Cesium atoms is optically pumped, while the induced ground state population depletion is probed with light tuned on the strong electric dipole transition at 852 nm. We use selective reflection to resolve the Doppler-free hyperfine structure of Cesium atoms. We observed a strong modification of the reflection spectra at the presence of metamaterial and discuss the role of the spatial variation of the surface plasmon polariton on the quadrupole coupling.Comment: 6 pages, 5 figure
    corecore