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Abstract

We perform a comprehensive Monte Carlo comparison between nine alternative procedures available

in the literature to detect jumps in financial assets using high-frequency data. We evaluate size and power

properties of the procedures under alternative sampling frequencies, persistence in volatility, jump size and

intensity, and degree of contamination with microstructure noise. The overall best performance is showed

by the Andersen et al. (2007) and Lee and Mykland (2008) intraday procedures (ABD-LM), provided the

price process is not very volatile. We propose two extensions to the existing battery of tests. The first

regards the finite sample improvements based on simulated critical values for the ABD-LM procedure.

The second regards a procedure that combines frequencies and tests able to reduce the number of spurious

jumps. Finally, we report an empirical analysis using real high frequency data on five stocks listed in the

New York Stock Exchange.

Keywords: jumps, nonparametric tests, high frequency data, stochastic volatility, Monte Carlo simulations

1 INTRODUCTION

There is a large consensus in the financial literature, theoretical and applied, that modeling return

dynamics requires the specification of a stochastic volatility component, which accommodates the persistence

in volatility, and of a jump component, which takes care of the unpredictable, large movements in the price

process. The identification of the time and the size of jumps has profound implications in risk management,

portfolio allocation, derivatives pricing (Aı̈t-Sahalia, 2004).

One of the main advances in high frequency econometrics over the last decade was the development of

nonparametric procedures to test for the presence of jumps in the path of a price process during a certain time

interval or at certain point in time. Such methods are very simple to apply, they just require high frequency

transaction prices or mid-quotes. Moreover, they are developed in a model free framework, incorporating

different classes of stochastic volatility models. In addition to the seminal contribution of Barndorff-Nielsen

and Shephard (2006), in this paper we consider eight other tests proposed by Andersen et al. (2007), Lee and

Mykland (2008), Aı̈t-Sahalia and Jacod (2008), Jiang and Oomen (2008), Andersen et al. (2009) [two tests

based on the minimum and median realized variance], Corsi et al. (2010) and Podolskij and Ziggel (2010).

All tests rely on CLT-type results that require an intraday sampling frequency that tends to infinity. The

test statistics are based on robust to jumps measures of variation in the price processes which are estimated

by using one of the following types of estimators: realized multi-power variations (Barndorff-Nielsen et al.,

2006), threshold estimators (Mancini, 2009), the median or the minimum realized variation (Andersen et al.,

2009), the corrected realized threshold multipower variation (Corsi et al., 2010).

Given such a variety of nonparametric methodologies to identify jumps, one might wonder which proce-

dure should be preferred, or whether there are data characteristics for which it is recommended to use one

test instead of the others. The main objective of this paper is to perform a thorough comparison among

the various testing procedures, based on a comprehensive set of Monte Carlo simulations, which embody
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the main features of financial data. It is important to establish whether the performance of the tests is

related to some features of the data, such as different sampling frequencies, different levels of volatility,

varying persistence in volatility, varying contamination with microstructure noise, varying jump size and

jump intensity. Based on the findings of the simulation exercise, we aim to provide guidelines to users of

nonparametric tests for jumps.

To the best of our knowledge, there are two other papers that deal with similar objectives. Theodosiou

and Žikeš (2010) perform an extensive Monte Carlo simulation exercise to evaluate the performance of

different jump detection procedures, with a special interest in the effect of illiquid data on the behaviour

of the various tests. Schwert (2009) instead relies only on real data to conclude that different procedures

pick up different sets of jumps. Our paper is more comprehensive in terms of testing procedures included

in our comparison. Moreover, we make two additional contributions to the existing literature. First, we

propose using simulated critical values for the Andersen et al. (2007) and Lee and Mykland (2008) tests;

second, and most importantly, we show that combining various procedures greatly improves the performance

of the tests in terms of spurious jump detection. In addition, the tests are applied to five selected stocks

listed in the New York Stock Exchange. We find that both the percentage of detected jumps, as well as the

estimated quadratic variation of the jump process, vary considerably with the employed testing procedure,

which advocates for the use of combinations of tests and frequencies.

The paper is organized as follows. In Section 2, we review the nine nonparametric tests for jumps

available in the literature. Section 3 describes the Monte Carlo setup and reports the main findings of

the simulations. Section 4 describes two extensions: the finite sample approximations for the intraday

procedures and alternative procedures that combine tests and frequencies. Section 5 reports an empirical

exercise using stock data. Section 6 concludes.

2 JUMP TESTS

In this section, we describe the available jump detection procedures. The dynamics of the logarithmic

price process, pt, is usually assumed to be a jump-diffusion process of the form:

dpt = µtdt+ σtdWt + dJt (1)

where µt represents the drift, σt the diffusion parameter, and Wt a Brownian motion at time t. Jt is the

jump process at time t, defined as Jt =
∑Nt

j=1 ctj where ctj represents the size of the jump at time tj and Nt

is a counting process, representing the number of jumps up to time t.
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The quadratic variation of the price process up to a certain point in time t (QVt), usually a trading day,

can be defined as follow:

QVt =

∫ t

0
σ2
sds+

Nt∑

j=1

c2tj , (2)

where
∫ t
0 σ

2
sds = IVt is the integrated variance or volatility. Thus, QVt is made up of a part coming from

the diffusion component and another one caused by the jump component. The two components have a

different nature and should be separately analyzed and modelled. The integrated volatility is characterized

by persistence, whereas jumps, apart from a possible drift, have an unpredictable nature.

The recent literature in the field of high frequency econometrics has developed several estimators for

both the quadratic variance and the integrated volatility of the price. Most of these estimators are based on

equally spaced data. Thus, the interval [0, t] is split into n equal subintervals of length δ. The j-th intraday

return rj on day t is defined as rj = pt−1+jδ − pt−1+(j−1)δ.

QVt can be estimated by the realized variance (RVt), defined as (Andersen and Bollerslev, 1998):

RVt =
n∑

j=1

r2j
p−→ QVt, for δ → 0 (3)

where
p−→ stands for convergence in probability.

To measure IVt one can use a wide range of estimators, such as multipower variations, threshold estima-

tors, medium and minimum realized variance. All these quantities are robust to jumps in the limit. Most

of the jump detection procedures are based on the comparison between RVt, which captures the variation

of the process generated by both the diffusion and the jump parts, and a robust to jumps estimator.

It is important to note that none of these procedures can test for the absence or presence of jumps in

the model or data generating process. They merely supply us with information on whether within a certain

time interval or at a certain moment, the realization of the process is continuous or not. Andersen et al.

(2007) and Lee and Mykland (2008) assume the null of continuity of the sample path at time tj ; for the

other procedures, the null is of continuity of the sample path during a certain period, such as a trading day.

For all tests, the alternative hypothesis implies discontinuity of the sample path, that is the occurrence of

at least one jump.

We turn now to a short presentation of the procedures and we refer to the original papers for details.

2.1 Barndorff-Nielsen and Shephard (2006) test (BNS)

Barndorff-Nielsen and Shephard (2004) propose the first robust to jumps estimator of the integrated

variance, the realized bipower variation (BVt), constructed to reduce the impact of jump returns on the

3



volatility estimate by multiplying them with adjacent jump-free returns:

BVt = 1.57
n∑

j=2

|rj ||rj−1| (4)

The BNS test infers whether jumps occur during a time interval (usually a trading day) by comparing

RVt, as an estimator for the quadratic variance, with BVt. Following simulation studies reported in BNS

and in Huang and Tauchen (2005), in this paper we use the ratio test defined as:

1− BVt
RVt√

0.61 δ max
(
1, TQt

BV 2
t

)
L−→ N (0, 1) (5)

where
L→ stands for convergence in law. TQt represents the realized tripower quarticity that consistently

estimates the integrated quarticity, i.e.
∫ t
0 σ

4
u du, and is defined as follows:

TQt = n 1.74

(
n

n− 2

) n∑

j=3

|rj−2|4/3|rj−1|4/3|rj |4/3. (6)

2.2 Andersen et al. (2007) and Lee and Mykland (2008) tests (ABD-LM)

The ABD and LM procedures test for jumps by comparing standardized intraday returns to a threshold.

Both tests are constructed under the null that there is no jump in the realization of the process at a certain

time, tj . This enables users to identify the exact time of a jump, as well as the number of jumps within a

trading day. We call these two procedures “intraday” tests.

The first step in applying both ABD and LM procedures is to compute a robust to jumps local (spot)

volatility estimate at time tj , V̂j , and then standardize the intraday returns as follows:

zj = |rj |/
√

V̂j , (7)

where V̂j = BVtj/(K − 2), with K the window size on which BVtj is calculated.

Given that zj is asymptotically normal, one can identify jumps by comparing zj with a normal threshold

(see ABD). This comparison must be performed for each of the n intraday returns to decide whether jumps

occurred during a trading day or not. This raises the issue of multiple testing, well-documented the statistical

literature. ABD propose to use the Šidák approach to deal with the false discovery rate problem which may

arise in this context. Once a nominal daily size, α, is fixed, the corresponding size for each intraday test is

defined as β = 1− (1− α)δ. We reject the null of continuity of the sample path if zj > Φ1−β/2, where Φ is
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the standard normal cdf.

LM use a slightly different approach. The usual 95% and 99% quantiles from the normal distribution

prove too permissive, leading to an over-rejection of the null. To overcome this limitation, the authors

propose using critical values from the limit distribution of the maximum of the test statistics. They show

that this maximum converges, for δ → 0, to a Gumbel variable:

(max (zj)− Cn)/Sn
L−→ ξ, P(ξ) = exp(−e−x) (8)

where Cn = (2 logn)1/2

0.8 − log π+log (logn)

1.6 (2 log n)1/2
and Sn = 1

0.8 (2 logn)1/2
.

The test can be conducted by comparing zj , standardized as max (zj) in (8), to the critical value from

the Gumbel distribution. LM propose computing σ̂j on a window size of K observations that precede time

tj . They show that K depends on the choice of the sampling frequency and suggest to take K =
√
252 ∗ n,

where n is the daily number of observations, whereas 252 is the number of days in the (financial) year.

The ABD test requires very low nominal sizes (10−5) with respect to all other procedures, which use a

5% significance level. Because of this and because the ABD and LM tests differ only in terms of the choice

of the critical values, in this paper we do not distinguish between the two procedures, and we report the

results under the acronym ‘ABD-LM’ based on the critical values of LM.

Whenever we make comparisons with the other tests which are applied on time intervals equal to one

trading day, we compute the ‘ABD-LM’ test statistics for every time tj within a trading day and then pick

up the maximum statistic as the final test for that day.

2.3 The Aı̈t-Sahalia and Jacod (2008) test (AJ)

AJ base their procedure on the following argument. Let B(m, δ)t =
∑n

j=1 |rj |m be the realized power

variation for data sampled every δ observations. If one computes the above estimator on two different time

scales, δ and kδ, the ratio between the two is proportional in the limit with some power of the ratio of the

time scales, provided no jumps are present:

̂S(m, k, δ)t =
B(m, kδ)t
B(m, δ)t

p−→ km/2−1, for δ → 0 (9)

where B(m, δ)t and B(m, kδ)t are the realized power variations of order m > 2, computed on time scales

δ and kδ, k ∈ N, k ≥ 2. The realized power variation for data sampled every δ observations is defined as:

B(m, δ)t =
∑n

j=1 |rj |m.
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The following test statistic is proposed to test for the null of no jumps:

̂S(m, k, δ)t − km/2−1

√
M(m, k)A(2m)t

A(m)t

L−→ N (0, 1), (10)

whereA(p) =
∫ t
o |σs|pds, p = m, 2m andM(m, k) = 1

µ2
m

(
km−2(1 + k)µ2m + km−2(k − 1)µ2

m − 2km/2−1µk,m

)
,

with µm = E|U |m, µ2m = E|U |2m, and µk,m = E(|U |m|U +
√
k − 1V )|, for U and V inde-

pendent standard normals. To estimate A(p), one can use either multipower variations, defined

as n
qr
2 −1

µq
r

∑n
j=q+1

∏q
i=1 |rj−i+1|r

p−→ A(qr), for δ → 0 and p = qr, or threshold estimators, i.e.

n
p
2−1

µp

∑n
j=1 |rj |pI{|rj |≤cδw}

p−→ A(p), where 1{|rj |≤c∗δw} is an indicator function for absolute returns lower

than a threshold fixed to c · δw, while µp and µr are absolute moments of orders p and r of a standard

normal. In this paper, we employ both approaches.

2.4 Jiang and Oomen (2008) test (JO)

The JO test exploits the difference between arithmetic and logarithmic returns:

SwVt(δ) = 2

[t/δ]∑

j=1

(Rj − rj) (11)

where Rj denotes the j-th arithmetic intraday return, while rj is the log return. The absence of jumps

makes the difference between SwVt and the realized variance equal to 0:

plim
δ→0

(SwVt −RVt) =





0 no jumps in[0, t]

2
∫ t
0 Ju dqu −

∫ t
0 J

2
u dqu jumps in[0, t]

(12)

where Ju = exp(Ju) − Ju − 1, with J the jump process. Under the alternative, in the limit, the difference

SwVt−RVt captures jumps in exponential form. Thus, the test statistic becomes very large in the presence

of large returns, enabling jump identification. The test statistic is defined as:

nBVt√
ΩSwV

(
1− RVt

SwVt

)
L−→ N (0, 1). (13)

ΩSwV can be estimated as Ω̂SwV = 3.05 n3

n−3

∑n−4
i=0

∏4
k=1 |ri+k|6/4.

2.5 Andersen et al. (2009) tests based on MinRV and MedRV tests(Min and Med)

Andersen et al. (2009) propose to estimate integrated volatility in the presence of jumps based on the

nearest neighbour truncation. The minimum realized variance (MinRVt) and median realized variance
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(MedRVt) eliminate jumps by taking respectively the minimum and the median over adjacent returns:

MinRVt = 2.75 n
n−1

∑n
j=2min(|rj |, |rj−1|)2

MedRVt = 1.42 n
n−2

∑n
j=3med(|rj |, |rj−1|, |rj−2|)2.

(14)

The Min and Med tests are based on the same argument as the BNS procedure, i.e. the comparison

between a robust to jumps estimator and RVt:

1− MinRVt
RVt√

1.81 δ max
(
1, MinRQt

MinRV 2
t

)
L−→ N (0, 1) and

1− MedRVt
RVt√

0.96 δ max
(
1, MedRQt

MedRV 2
t

)
L−→ N (0, 1), (15)

where MinRQt = 2.21 n2

n−1

∑n
j=2min(|rj |, |rj−1|)4 is the minimum realized quarticity and MedRQt =

0.92 n2

n−2

∑n
j=3med(|rj |, |rj−1|, |rj−2|)4 the median realized quarticity which estimate the integrated quar-

ticity.

2.6 Corsi et al. (2010) test (CPR)

The CPR test is also based on a comparison between RVt and a robust to jumps estimator. However,

the procedure employs the corrected realized threshold bipower variation, as an alternative to the BVt. This

new estimator discards jumps given that it is built as a bipower variation and truncates returns over a

certain threshold. The following test statistic is employed:

1− C−TBVt
RVt√

0.61 δ max
(
1, C−TTriPVt

C−TBV 2
t

)
L−→ N (0, 1), (16)

where C−TBVt and C−TTriPVt represent the corrected realized threshold bipower and tripower variation,

respectively, defined as:

C − TBVt = 1.57
∑n

j=2 Z1(rj , ϑj)Z1(rj−1, ϑj−1),

C − TTriPVt = 1.74
∑n

j=3 Z1(rj , ϑj)Z1(rj−1, ϑj−1)Z1(rj−2, ϑj−2)
(17)

where Z1(rj , ϑj) =





|rj |, r2j < ϑj

1.094 ϑ
1
2
j , r2j > ϑj

is a function of the return at time tj and a threshold ϑj = c2ϑ · V̂j .

c2ϑ is a scale free constant and V̂j a local volatility estimator.

Following authors’ recommendation, to compute the threshold, ϑj , we take cϑ = 3. For the auxiliary
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local volatility estimate, V̂j , we employ the non-parametric filter proposed by CPR that removes jumps from

data in several iterations.

2.7 Podolskij and Ziggel (2010) test (PZ)

The PZ procedure is based on a modified version of Mancini (2009)’s threshold estimator as an alternative

to BVt in testing for jumps. However, in order to derive a limiting theory, authors define the test statistics

as a difference between a realized power variation estimator and a threshold estimator perturbed by some

external positive i.i.d. random variables, ηj , with E[ηj ] = 1 and finite variance, V ar[ηj ]:

T (m, δ)t = n
m−1

2

n∑

j=1

|rj |m(1− ηjI{|rj |≤cδw}), m ≥ 2, (18)

where 1{|rj |≤c∗δw} is an indicator function for absolute returns lower than a threshold fixed to c · δw, with

c = 2.3
√
BVt and w = .4. The test statistic is defined as follows:

T (m, δ)t√
V ar[ηj ]n

2m
2

−1∑[t/δ]
j=1 |rj |2mI{|rj |≤cδw}

L−→ N (0, 1), (19)

PZ recommend to sample ηj from the distribution P η = 1
2(ς1−τ + ς1+τ ), where ς is the Dirac measure, and

τ is a constant chosen relatively small, e.g. τ = 0.1 or 0.05.

3 MONTE CARLO ANALYSIS

In this section, we report the results of an extensive comparison among the testing procedures presented

in the previous section. The exercise is based on a comprehensive set of Monte Carlo simulations, which

embody several features of financial data. To quantify the size for all tests, our simulations are based

on stochastic volatility models with varying persistence. To evaluate their power property, we consider

stochastic volatility models with jumps of different sizes arriving with varying intensity.

3.1 Simulation design

Following Huang and Tauchen (2005), we simulated several stochastic volatility processes with leverage

effect, different levels of persistence in volatility, to which we add jumps arriving with different intensities

and variances.

The benchmark model for our simulations is a stochastic volatility model with one volatility factor

(SV1F). The volatility factor enters the price equation in an exponential form, as suggested in Chernov
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et al. (2003):

dpt = 0.03dt+ exp[0.125 υt]dWpt ,

dυt = αυυtdt+ dWυt , corr(dWp, dWυ) = −0.62
(20)

where pt is the log-price process, the W ’s are standard Brownian motions, υt the volatility factor, αυ the

mean reversion parameter of the volatility process with values in the following set: {-0.137e−2, -0.100,

-1.386}. This is the process that we simulate under the null hypothesis of no jumps.

Chernov et al. (2003) show that it is possible to generate dynamics similar to jumps by using a two factor

stochastic volatility model. A first volatility factor controls for the persistence in the volatility process, while

the second factor generates higher tails in a similar manner to a jump process. Thus, a second stochastic

volatility model (SV2F) is defined as:

dpt = 0.03dt+ exp[−1.20 + 0.04υ1t + 1.50υ2t ]dWpt

dυ1t = (−0.137e−2) υ1tdt+ dWυ1t

dυ2t = −1.386 υ2tdt+ [1 + 0.25 υ2t ]dWυ2t

(21)

with corr(dWp, dWυ1) = −0.30 and corr(dWp, dWυ2) = −0.30. The values for the coefficients for both SV1F

and SV2F models are as in Huang and Tauchen (2005).

SV2F can generate extreme returns, without having a jump component. We simulate this model only

under the null hypothesis. Our objective is to understand whether the various tests for jumps maintain a

reasonable size in extremely volatile periods.

To assess the power of the tests, we augment SV1F with rare compound Poisson jumps, arriving with

intensity λ between 0 and 2 and having normally distributed sizes with mean 0 and standard deviation

σjump that ranges between 0 and 2.5.

In general, empirical works apply these tests at a daily level, in order to be able to conclude whether

jumps occurred during the trading day. Therefore, we evaluate the statistical properties of all jump tests

based on data simulated for 10,000 trading days, for all models and under both hypotheses of continuity and

discontinuity. For the simulation of each path, we use an Euler discretization scheme based on increments

of 1 second. We then perform a sampling at 1, 5, 15 and 30 minutes.

We report results using a 5% significance level. The results for alternative significance levels, such as

1%, 0.1% and 0.01%, are in line with the ones at 5%. We report size and size adjusted power. The latter

is computed by centering the test statistic under the alternative with the average of the statistic under the

null.
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3.2 Monte Carlo results

3.2.1 Size and power of the tests for stochastic volatility models

SIZE For SV1F, we consider three alternative values of the mean reversion parameter of the volatility

factor. In all cases, the empirical size tends to slightly decrease with the increase in the mean reversion

parameter, without affecting the ranking of the tests. In Table 1, we only report the empirical size for the

medium mean reversion case (αυ = −0.100). The results for values of αυ = −0.137e−2, −1.386 are available

upon request.

[Insert Table 1 here]

The biggest size distortion is encountered in the case of the JO test, where, for a 1 second sampling

frequency, we have a size of 6.5%, which increases when the sampling frequency diminishes. As already

mentioned, the JO test statistic captures jumps in exponential form in the limit and thus, gets very large in

the presence of high returns, leading to an over-rejection of the null. A similar pattern can be seen for the

PZ procedure, which displays a size close to the nominal one when sampling is performed every second, but

then gets rapidly and highly oversized. This may be due to that the magnitude of the threshold estimator

in the PZ test is reduced under the influence of two simultaneous effects: the truncation of returns and the

dependence of the threshold on the realized bipower variation, which smooths volatility out and lowers the

threshold. Consequently, the test statistic becomes large, leading to over-rejection.

The BNS, Med, Min and CPR behave very similarly. The best performance is shown by the Med and

BNS tests. Both tests display a size very close to the nominal one at a sampling frequency of 1 second, i.e.

5.1% for the Med and 4.8% for BNS. The size tends to slowly increase with the decrease in the sampling

frequencies. The Min test behaves well at 1 second with a size of 4.7%, but has a tendency to become

undersized at lower frequencies, getting to 3.5% at 30 minutes. The ranking between the BNS, Med and

Min tests can be explained by the difference in the efficiency of the integrated variance estimators that these

tests employ. Both BPVt and MedRVt display smaller asymptotic variances than MinRVt. The CPR has

a size close to the nominal one at 1 second, but then becomes oversized with the decrease in the sampling

frequency and displays a size equal to 7.5% for 30 minutes data. For this procedure, the magnitude of the

robust to jumps estimator (C−TBVt) is reduced by that the estimator is built as a multipower variation and

because of the truncation of returns. The intraday ABD-LM procedure tends to be oversized at all sampling

frequencies. Its size distortion is not very high though, varying around 1-1.5% from the nominal size. This

may be due to that the realized bipower variation, used to standardize returns, tends to smooth out the local

volatility, resulting in a higher test statistic. The AJ test statistic was standardized with standard deviations
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based on both power variations and threshold estimators. In both cases, at a sampling frequency of 1 second,

the test seems slightly undersized. However, when diminishing the sampling frequency, the behavior of the

test statistics differs. The test becomes rapidly oversized when its variance is based on realized power

variations and severely undersized when threshold estimators are used to estimate its variance. This test

too seems to work well at higher frequencies.

Table 2 reports the empirical size for the SV2F model. If we look at all sampling frequencies, the best

performance is displayed by the Min test, followed by BNS. For 1 second sampling frequency, size is equal to

5.2% and 5.4%, which increases at lower sampling frequencies though less dramatically than the other tests.

The Med, CPR and JO tests behave similarly to BNS and Min, but become more rapidly oversized. The

AJ(power var) has a size close to the nominal one when sampling is done every second, but then becomes

rapidly oversized. When the AJ(threshold) is considered, the test gets severely undersized at lower sampling

frequencies. The PZ and the intraday procedures display by far the poorest performance, being severely

oversized even when we sample every second (99.3% for the intraday tests and 70.1% for PZ).

[Insert Table 2 here]

POWER We now evaluate the power of the tests by adding to the continuous stochastic volatility process

SV1F jump processes with alternative intensities and jump sizes.

Varying jump intensity In order to examine how jump detection changes as the number of jumps

grows, we consider Poisson jump arrival times depending on the following varying jump intensities (λ): .014,

.058, .089, .118, .5, 1, 1.5, and 2. These intensities can be interpreted as the average number of jumps per

day and generate the following total number of jumps: 148, 560, 754, 1208, 5081, 10052, 15058 and 20200.

For all these scenarios, we consider a jump size that is normally distributed with mean 0 and standard

deviation equal to 1.5%. We did not impose any restrictions on the maximum number of jumps per day.

Thus, more than one jump may occur during a trading day.

In Table 3, we report the size corrected power of the tests for λ = 0.5 and λ = 2. Results for alternative

values of λ, reported in Dumitru and Urga (2011), confirm the findings discussed here. The frequency of

correctly identified jumps increases as the jump intensity raises.

[Insert Table 3 here]

In general, tests which display a higher size are also better ranked in terms of power. The best tests

are the intraday ABD-LM procedures and the PZ test. For the intraday procedures, when λ = 0.5, the size

adjusted power is 99% for a sampling frequency of 1 second and then gradually diminishes as the sampling
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frequency decreases. At lower frequencies, the power for ABD-LM is 91%, for a sampling frequency of 1

minute, 80% for 5 minutes data, 66% at 15 minutes and finally 54% at 30 minutes. For the PZ procedure we

observe a very high power (99% at 1 sec) which decreases with the sampling frequency, and remains higher

than the other procedures (except the intraday tests) for data sampled at 1, 5 and 15 minutes. It is worth

mentioning that at 30 minutes the power of PZ is (very close to) 0 for all values of λ. Note that size adjusted

power implies centering with the average test statistic under the null, which in this case is extremely high,

i.e. 3.29 · 1012. The JO test displays a very high power (97% for λ = .5) at 1 second and can be ranked after

the PZ, ABD-LM and AJ tests. However, at lower frequencies, its power becomes slightly lower than the

other tests, except AJ. Power becomes 85% at 1 minute, 73% at 5 minutes, 57% at 15 minutes and finally

45% for data sampled every 30 minutes. The intuition for this results can be explained by considering the

Taylor series expansion of the test statistic, which contains sums of returns at powers higher than 3. At

lower frequencies, jumps are offset by summation with returns of opposite sign. Both versions of the AJ

test display a high power at 1 second, which plummets at lower frequencies. For instance, for λ = .5, the

power decreases at around 80% when sampling is done every minute, for both versions of the test, followed

by a fall at a level of 23% for the version based on threshold estimators and 32% for the test based on power

variations, for a sampling frequency of 5 minutes. If we look at lower frequencies, the test based on power

variation-type estimators displays a gradual decrease in power, which gets to a value of 24% for a 30 minutes

sampling frequency, while the version based on threshold estimators displays a very low power of 0.6% at 30

minutes. This test relies on the asymptotic scale proportionality of two realized power variations computed

on two different time scales. At lower frequencies, the above relationship does no longer hold, leading to the

poor performance of the test.

The BNS, CPR, Med and Min tests display a very similar behaviour. They all exhibit very good power

properties, with a power ranging between 95% and 96% when sampling at every second for λ = .5, which

then decreases with the decrease in the sampling frequency, with values below the ones observed for the

intraday and PZ tests. Over all frequencies, the highest power is displayed by CPR, followed by Med, BNS

and Min.

Varying jump size A further insight on the ability of all these procedures to identify jumps can be

attained by varying the jump size. We now fix the number of jumps for the entire sample and vary the jump

size. But, we maintain its nondeterministic character, by drawing it from a normal distribution with mean

0 and a standard deviation (σjump) that ranges between 0 and 2 with a growth rate of .5. Table 4 reports

the power of the jump detection procedures for σjump = 0.5 and σjump = 2. Results for alternative values

of σjump reported in Dumitru and Urga (2011) confirm the findings reported here.
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[Insert Table 4 here]

Overall, the performance of all tests increases with the size of the jumps. The ranking of the tests is in

line with what was found for the case of varying jump intensity. There is a confirmation about the very good

ability of the ABD-LM and PZ tests to detect jumps, with power ranging between 95% and 99% at 1 second,

which gradually decreases with the sampling frequency. Just as in the case of varying jump intensity, the

JO procedure exhibits a very high power at 1 second sampling frequency, ranging between 89% and 98%.

However, at lower frequencies, the procedure loses power in front of all other tests with the exception of

AJ. We observe the same ranking as in the previous section for the CPR, Med, BNS and Min procedures.

At the highest frequency, they exhibit a power ranging between 84% and 88% for the lowest levels of jump

sizes (σjump = .5). When σjump takes its highest value, 2, power is around 97% for all 4 procedures at 1

second. For lower frequencies, the performance of these tests decays. The AJ does again very well for the

highest frequency and ranks itself immediately after the PZ and ABD-LM procedures. However, at lower

frequencies, we observe a dramatic decrease in power.

3.2.2 Size and power of the tests in the presence of microstructure noise

So far, our analysis was based on the assumption that prices are generated as a continuous time jump

diffusion process. However, when we deal with financial assets, the observed price process is a discrete one.

It is either constant, generating zero returns, or changes a lot from one transaction to another. We say that

prices are contaminated with microstructure noise, which may obstruct our viewing of the real price process.

In what follows, we simulate i.i.d. microstructure noise normally distributed with mean 0 and a varying

variance. The noise is then added to the SV1F model with medium mean reversion to study its effects on

the statistical properties of the tests for jumps.

SIZE The values for the standard deviation of the noise (σnoise) are: .027, .052, and 0.080, which are

equivalent to 0.025, 0.047 and 0.073 in terms of signal-to-noise ratios, defined as σnoise

IV avg
t

, where IV avg
t stands

for the daily average integrated variance. Table 5 reports the frequencies of spuriously detected jumps for

all tests, under alternative sampling frequencies and a medium level of contamination with microstructure

noise, i.e. σnoise = .052. The full set of results is reported in Dumitru and Urga (2011).

[Insert Table 5 here]

Apart from the AJ and JO tests, all tests become severely undersized in the presence of microstructure

noise with an increasing size distortion as the variance of the noise grows. AJ(threshold) does better than
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AJ(power var) when lower sampling frequencies are considered. If sampling is made every 15 minutes, the

size of AJ(threshold) gets close to the nominal one. When σnoise = 0.052 (Table 5), size is 3.7% for the

version based on threshold estimators, whereas for the other version of the test, it reaches a very high level

of 10.9%. The JO procedure generally displays a very high size in the presence of noise at 1 second, which

increases with the variance of the noise. However, when sampling is done at lower frequencies (from 1

minute onward), size decreases abruptly in the beginning and then, moderately increases again. The large

size at 1 second is due to the fact that the distribution of the test statistic shifts to the right in the presence

of microstructure noise. JO notice this problem in the original paper and propose corrections for the test

statistics in the presence of i.i.d. noise. The least affected by noise is the PZ procedure, which, at the

highest sampling frequency, displays a size close to the nominal one even for the highest values of σnoise.

This is a consequence of its higher and rapidly increasing size, which turns out to be an advantage in this

case, as it compensates the downward bias caused by the presence of noise. The intraday tests, ABD-LM,

also behave very well in the presence of i.i.d. noise, being less underbiased than other procedures at high

frequencies. The BNS, CPR, Med and Min tests are severely undersized at very high frequencies. Then their

size increases with the decrease in the sampling frequency. For the levels of noise reported here, BNS, CPR

and Med tend to reach a size level close to the nominal only at 15 minutes. The Min procedure, which tends

to be undersized in the absence of noise, displays size levels lower than the nominal one for all frequencies.

Except the PZ test which has a size close to the nominal one at 1 second and 1 minute sampling frequency,

as if the noise was not present, all other tests tend to get close to the nominal size as the sampling frequency

diminishes: JO somewhere between the 5 and 15 minutes sampling frequencies, AJ, BNS, CPR and Med

generally at 15 minutes, and ABD-LM somewhere between 15 and 30 minutes.

POWER In this section, we examine how the ability of the tests to detect jumps changes in the presence

of microstructure noise. We consider a jump process with intensity λ = .5 and jump sizes randomly drawn

from a N (0, 1.5). The size adjusted power for all tests and for a medium level of contamination with noise,

i.e. σnoise = .052, is reported in Table 6. Results for σnoise = .027 and .080 are reported in Dumitru and

Urga (2011).

[Insert Table 6 here]

The hierarchy of the tests in terms of power remains close to the one for the case of no noise. As the size

of the noise standard deviation increases, we observe a decrease in power. The intraday and PZ procedures

display again the best power. ABD-LM displays the same tendency of decreasing power with the decrease

in the sampling frequency, as if the noise were not present. PZ seems to be affected by noise at 1 second,
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but then regains power at 1 minute (84%). Power at 30 minutes is again extremely low, just as in the case

without noise. BNS, CPR, Med and Min tend to behave similarly again. They suffer a significant loss in

power at 1 second, but then tend to regain it. All these tests exhibit a very fast power recovery, occurring

at 1 minute. The highest power at 1 minute (79%) is showed by CPR. It is followed by Med, BNS and Min,

with closed values for power. Though we notice improvements, however power is lower than in the absence

of noise. JO displays a similar pattern to the above tests, but an overall slightly weaker performance. It

tends to be better ranked for lower levels of noise. There is a decrease in the corrected power at 1 second,

followed by a slight recovery of power up to 1 minute or 5 minutes. Power at 1 minute is 76% and decreases

again at lower frequencies. By far the worst performance is observed for the AJ tests, which lose their power

at 1 second. For lower frequencies, we notice a slight increase in power. AJ(power var) performs somewhat

better than the test based on threshold estimators.

To summarize, in the presence of noise, the size of the various jump detection procedures comes close

the nominal one when sampling at lower frequencies. In the case of the power, this effect is much more

moderate. Power increases at 1 minute for almost all tests. At lower frequencies, power tends to decrease,

just as when noise is not present. Of course, the results on the frequencies at which size and power are

regained depend on the simulated data generating process and in particular on the type and amount of

noise. The issue of selecting a frequency for applying tests for jumps is further discussed in Section 5.

4 EXTENSIONS

In this section, we propose two extensions to the existing battery of tests. The first regards the finite

sample improvements based on simulated critical values for the ABD-LM procedure. The second regards

the combinations of procedures and frequencies to reduce the number of detected spurious jumps.

4.1 Finite sample distributions for the ABD and LM tests

So far in the paper, we have used the ABD-LM procedure based on LM asymptotic critical values. In

this section, we propose to use simulated critical values for the maximum of the ABD-LM tests statistics,

to account for the sample size in the inference process. [We are grateful to Dobrislav Dobrev for suggesting

us to explore the use of approximate finite sample distributions.] The approach we propose is based on

the so-called “Monte Carlo Reality Check” proposed by White (2000). Critical values are obtained in the

following way. Let n be the number of daily observations and V̂j the local volatility estimate at time tj ,

obtained as in ABD-LM. At each time, tj , we simulate 10,000 times n observations from N (0, V̂j). For every

run, we take the maximum over the n observations and thus, the 10,000 maxima represent the approximate
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finite sample distribution from which we select the critical values. Finally, the statistic in (7) is compared

to the corresponding critical value.

To assess the performance of the simulation-based critical values, we simulate the SV1F model with

medium mean reversion, augmented by jumps and microstructure noise. The latter is sampled from a

N (0, σnoise), where σnoise takes the values as reported in Section 3.2.2. We compare the results in terms

of size and power with the ones based on the asymptotic distribution of LM test. For the 10,000 simulated

trading days, we sampled data at 1 second, 1, 5, 15 and 30 minutes.

SIZE We quantify size as follows. For each of the 10,000 simulated trading days, we check whether the

procedures rejected the null at least once during that day, and then, we calculate the percentage of days, out

of the total number of days, with at least one jump. Figure 1 reports the nominal, asymptotic and simulated

size for different sampling frequencies for the SV1F model with σnoise = 0.052. The test based on simulated

critical values is less undersized at very high frequencies (1 second) than the LM asymptotic counterpart.

This conclusion is valid for all significance levels considered. Size for the finite sample adjustment procedure

increases, but remains close to the nominal one very at 1 minute. However, at lower frequencies the procedure

tends to become more oversized than its asymptotic counterpart. It is evident that the simulated-based

procedure works better at high frequencies in the presence of i.i.d microstructure noise.

[Insert Figure 1 here]

POWER In order to assess the power of our finite sample adjustment, we add jumps with intensity

λ = 0.5 and size with σjump = 1.5%. We compute the power as the percentage of days the procedures were

able to correctly signal that at least one jump occurred during the day.

Figure 2 illustrates the size adjusted power as a function of the sampling frequency for three levels of

σnoise, 0.027 (low), 0.052 (medium) and 0.08 (high) and 5%, 1% and .1% significance levels.

[Insert Figure 2 here]

We observe the size adjusted power is systematically higher when we use simulated critical values for all

sampling frequencies, all significance levels and all levels of noise. The gap between the power of simulation-

based and asymptotic procedures widens as the variance of the noise increases, making the use of simulated

critical values very suitable in presence of higher levels of contamination with noise. Moreover, the size

adjusted power for the simulation-based procedure shows a better performance as the significance levels

become lower.
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To summarize, the simulation-based procedure displays lower size distortions in the presence of mi-

crostructure noise only at higher frequencies, while we observe an overall better performance in terms of

power. Just as in ABD, we think the use of lower significance levels (.1%) can help to correctly disentangle

jumps from the price process, without generating a high number of spurious jumps.

4.2 Cross-performances of the tests

In a world without microstructure noise, users of jump tests should simply opt for the best procedure

in terms of both size and power and apply it at the highest frequency available. However, as reported in

Section 3.2.2, the presence of microstructure noise leads to serious distortions in both size and power at

high frequencies. The sensible solution to sample less often can lead to a loss in power. In this section, we

propose a procedure that combines tests and frequencies through both reunions and intersections. This new

procedure retains a good level of power and, at the same time, reduces the number of detected spurious

jumps.

The idea of using more sampling frequencies has been exploited before in high frequency econometrics

for volatility estimation in the presence of noise. Zhang et al. (2005) and Zhang (2006) propose using at

least two time scales in estimating the quadratic variation of the price process. Their methodology relies

on the argument that one can capture the volatility of the prices at lower frequencies and the variation of

the noise process at very high frequencies. In our case, combining tests and frequencies allows to extract as

much information as possible on jumps in the price process from different procedures and time scales. We

combine the advantages of more than one procedure, when combining procedures, and make use of more

data (“throwing away less data”), when combining frequencies. Moreover, finding a testing procedure that

reduces the percentage of spurious jumps is essential for the case in which a large number of zero returns are

observed, which is very common in practice. In this case, the integrated volatility tends to be underestimated

by various jump robust estimators, especially those based on the bipower variation (Andersen et al., 2009).

This leads to an over-rejection of the null for most of the jump tests. The procedure proposed in this paper

averages results from separate tests or time scales, and, as we show below, decreases the percentage of

spurious jumps.

To analyze the performance of our procedure, we rely on data simulated from the SV1F model, augmented

by jumps and microstructure noise. We consider rare compound Poisson jumps with intensity λ = 0.5 and

a size distributed as a N (0, 1.5), while the microstructure noise is sampled from a N (0, .052).

First, we apply the same procedure at different sampling frequencies, i.e. 1, 5 and 15 minutes. Once the

test statistics are computed, we take intersections of the results at 1 and 5 minutes and at 5 and 15 minutes.
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We then take the reunion over the two sets of results. For instance, if we consider the BNS test, our decision

rule can be written as (BNS1 ∩ BNS5) ∪ (BNS5 ∩ BNS15). This means that on a certain trading day,

the path of the price process is considered discontinuous if one or more jumps is/ are detected by the BNS

test performed at 5 minutes and at least by one of the other two BNS tests at 1 and 15 minutes.

Table 7 reports the results from combining frequencies for the BNS, CPR, ABD-LM, Med, Min, PZ

and JO procedures. In each case, we computed three measures: the percentage of correctly classified jumps

(’Jump’), the percentage of days that are correctly classified as having continuous paths (’No jump’), and

the percentage of spurious jumps (’Spurious’). The results in Table 7 should be interpreted by contrasting

them with the size and power values of the tests reported in Tables 5 and 6. The significance level for all

tests is 5%.

[Insert Table 7 here]

The results suggest that our procedure manages to average the power over frequencies and/or tests,

combined with a substantial decrease in the percentage of spurious jumps. For instance, in the second

column of Table 7, we observe that the percentage of spuriously detected jumps becomes very low (.25%)

and is combined with a very high proportion (95.74%) of days that were rightly classified as without jumps

and a high proportion of correctly identified jumps (62.29%). Note that the latter percentage averages out

the power of the BNS test at different sampling frequencies, i.e. 76% at 1 minute, 69% at 5 minutes, and

54% at 15 minutes (see Table 6).

Further, by comparing the results in Table 7 with those in Tables 5 and 6, we notice that one can

make the most of this procedure when we combine frequencies of tests with a high power, such as PZ and

ABD-LM. For instance, PZ has a very high power, but also a high size. Thus, combining frequencies allows

this test to maintain a good power (77%) and at the same time, the percentage of spurious jumps decreases

significantly.

In addition to combining sampling frequencies, we also combine different tests on data sampled at the

same frequency. In Table 8, we report the results for a 5 minutes sampling frequency, while the results for

alternative frequencies, reported in Dumitru and Urga (2011), confirm the findings below.

[Insert Table 8 here]

When we combine tests, the percentage of correctly classified jumps averages out the performance of

individual tests. Moreover, there is a significant decrease in the percentage of spurious jumps. We observe

that the best performance is attained when we use combinations of the most powerful tests, such as PZ

and ABD-LM and, in addition, when one of the two tests is in both intersections with the other tests. For
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instance, the combination (BNS5 ∩ PZ5) ∪ (PZ5 ∩Med5) intersects PZ twice with two other procedures

(BNS and Med). This decision rule generates a high percentage of correctly classified jumps (72%) and a

low percentage of spurious jumps (1.6%).

To summarize, the procedure combining sampling frequencies and tests performs better than the single

tests. It preserves a high percentage of rightly classified jumps, with a significant decrease in the percentage

of spurious jumps. A useful guideline for users is to include powerful tests in various combinations.

5 EMPIRICAL APPLICATION

In this section, we report an empirical application based on high frequency data for five stocks listed in

the New York Stock Exchange, namely Procter&Gamble, IBM, JP Morgan, General Electric and Disney.

Our dataset covers 5 years, running from the 3rd of January 2005 to the end of December 2009, with an

average of 1250 days. In order to carry out the jump tests, we rely on transaction data, which we sample

at 1, 5, 10, 15 and 30 minutes. This sampling schemes left us with an average of approximately 414 data

points at 1 minute, 82 observations at 5 minutes, 40 at 10 minutes, 26 at 15 and 12 at 30 minutes.

Table 9 reports the proportions of identified jumps. While there is no high variability of the findings

from one stock to another, results vary considerably between procedures and frequencies. For each procedure

and for each stock, there is a decrease in the percentage of identified jumps as we sample less frequently.

At 1 minute, most of the tests detect a high percentage of jumps, which then substantially decreases at 5

minutes. From 5 minutes onward, the decrease is less pronounced, with a stabilization occurring around 10-

15 minutes. There is not a clear guideline in the literature on an optimal frequency to use in applying jump

tests. However, the empirical evidence in this paper suggests to apply the tests to a variety of frequencies

and then choose the frequency at which the percentage of jumps stabilizes. This rule of thumb corresponds

to the 10 minutes frequency.

[Insert Table 9 here]

In what follows, we comment only the results for IBM. The same comments apply for all other stocks. For

IBM, PZ and ABD-LM identify 97%, followed by CPR with 88% and BNS with 77%. At lower frequencies,

this percentage drastically drops. A possible explanation is that at higher frequencies, the procedures detect

a spurious jumps because of the presence of high number of zero returns. Note that the above tests are

based on BVt (BNS and ABD-LM in the test statistic, and CPR and PZ in the threshold volatility estimate),

which becomes downward biased in the presence of many zero returns, causing the tests statistics to increase

and thus to over-reject the null. On the contrary, for tests not based on BVt, such as Min, Med, this effect
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is no longer that relevant. The JO test also seems only slightly affected by zero returns at 1 minute (37%

days with jumps), though the percentage of detected jumps does not change very much with the frequency.

The two AJ tests display percentages of identified jumps around 55% at 1 second, but at lower frequencies

AJ(threshold) detects a very small amount of jumps, whereas AJ(power var) between 24% and 33% jumps

for IBM.

The high variability in the percentage of detected jumps reported in Table 9 calls for the application of

the combinations of tests as we proposed in Section 4.2. Table 10 reports the proportion of jumps detected

by different combinations of frequencies and procedures for IBM. There is a confirmation that combining

procedures leads to a decrease in the proportion of identified jumps. Moreover, there is evidence of higher

proportion of jumps when procedures with higher power, like ABD-LM and PZ, are combined. When

combining frequencies, in all cases except the ABD-LM and PZ procedures, the proportion of detected jumps

is lower than the proportion identified by the individual procedures on each of the combined frequencies, as

reported in Table 9. In the case of the ABD-LM and PZ procedures instead, the combination of frequencies

leads to a percentage of jumps in the range of what was obtained on individual procedures, due to the

high individual power of the two tests. When combing different tests for jumps for a 10 minutes sampling

frequency, we observe that the proportion of identified jumps is in the range of the proportions obtained in

the case of individual procedures, but it tends to be closer to the lower values of the individual procedures.

[Insert Table 10 here]

A final issue we address is the relative contribution of jumps to the quadratic variation of the price

process. [We wish to thank an Associate Editor for suggesting us to explore this issue.] For each test for

jumps, we detect all days with discontinuities. Then, we eliminate jumps by removing the highest return

in absolute value that occurs on days with jumps. We compute the realized variation on the initial price

series sampled every 10 minutes, as well as on the new series without jumps. The former is a proxy for the

quadratic variation of the price process, the latter for the integrated variance (RV C), whereas the difference

between the two estimates the quadratic variation of the jump process (RV J). Table 11, Panel A, reports

for each test for jumps and for all years considered in our sample the percentages of RV C and RV J in the

yearly realized variation for IBM. The yearly RV increases from a level of 0.023 in 2005 to a peak of 0.155

in 2008, when the sub-prime crisis affected mostly the financial markets. In 2009, RV decreases to 0.058,

which is still very high in comparison to tranquil years, such as 2005 and 2006. The levels of RV C and

RV J vary a lot depending on the used jump detection procedure. Thus, during the first two calm years,

2005 and 2006, the percentage of RV J is between 8% and 33% by the alternative procedures. However,

this percentage is systematically higher in 2006 than 2005 for all tests. During the years of the financial
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crises, 2007-2009, this percentage drops. A minimum for almost all testing procedures is reached in 2008,

the year of maximum volatility, when the percentage of RV J varies between 4% and 22%, depending on

the adopted procedure. In periods of high volatility, the ability of the tests to pick up jumps is lower,

whereas in calmer periods, jumps are much more visible. Panel B shows the values for RV C and RV J

for some combinations of frequencies and procedures. As expected, the the percentage of RV J is generally

lower when combinations are used than when individual tests are applied. When frequencies are combined,

RV J is always lower, whereas when tests are combined, RV J is in the range of the values for individual

tests. Jumps show the highest contribution when combining frequencies of the higher power tests, such as

ABD-LM and PZ.

[Insert Table 11 here]

6 CONCLUSION

This paper brings three major contributions to the existing literature on non parametric jump testing

procedures in high frequency data. First, we offered a robust and comprehensive comparison between nine

alternative jump detection procedures. We conducted an extensive numerical analysis using alternative levels

of volatility, different levels of persistence in the volatility factor(s), various jump intensities and jump sizes,

and different levels of microstructure noise contamination. The main conclusion is that the ABD-LM tests

show overall the best performance, though in the case of extremely volatile processes, they become highly

oversized. Second, we proposed a finite sample adjustment for the ABD-LM procedure. We suggested the

use of simulated critical values, as an alternative to the asymptotic critical values, leading to an improvement

in size at higher sampling frequencies and an overall improvement in power. Third, given the high variability

of the performance of the tests, we proposed to combine available jump tests through both intersections and

reunions over alternative sampling frequencies and procedures. We showed that combining procedures with

high power with other tests preserved power with a considerable reduction in the percentage of detected

spurious jumps. An empirical exercise, conducted on five stocks listed in the New York Stock Exchange,

confirmed the results from the simulations.

The analysis in the present paper can be extended in at least four different ways. As jumps are caused

by the arrival of new information to the market, it would be interesting to examine the so-called economic

significance of jumps. For the simulation set-up, the case of i.i.d. microstructure noise can be extended to

account for correlation and zero returns. Another natural extension is to consider arrivals with an infinite

number of jumps. Finally, to minimize the detection of spurious jumps, the combination of tests could

be enriched by considering test averaging procedures using Fisher(1925)’s method of combining p-values of
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different tests. We leave these extensions to future research.

Guidelines for empirical work

Based on the findings of the simulation exercise and the empirical application, we offer some guidelines

for empirical work when testing for jumps based on high frequency data.

If users opt for a single test, the ABD-LM procedure is a good choice, as it retains high power with a

manageable size and it is also informative on the time of the jump. If the sample period is characterized by

high volatility, tests with a more conservative size (BNS, Med, Min) are a better option.

However, since high frequency data is contaminated with microstructure noise, we recommend to im-

plement combinations of tests or frequencies, as described in Section 4.2. The best way to proceed is to

make use of powerful tests, such as ABD-LM and PZ, either by combining different frequencies for the same

procedure or by combining powerful tests with tests with a moderate size.

To select the sampling frequency at which to apply tests for jumps, the empirical evidence suggests to

implement all tests on data sampled at a variety of frequencies and then choose the frequency at which the

percentage of jumps stabilizes. This strategy can also be extended to combinations of tests.
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Table 1. Size of the tests for jumps for the SV1F model with medium mean reversion

Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.047 0.038 0.031 0.027 0.014
AJ(power var) 0.048 0.046 0.051 0.088 0.150

BNS 0.048 0.054 0.053 0.057 0.063
CPR 0.052 0.055 0.056 0.064 0.075
JO 0.065 0.069 0.086 0.122 0.189

ABD-LM 0.055 0.066 0.074 0.063 0.059
Med 0.051 0.050 0.052 0.053 0.064
Min 0.047 0.046 0.044 0.040 0.035
PZ 0.049 0.065 0.083 0.100 0.121

Table 2. Size of the tests for jumps for the SV2F model

Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.127 0.094 0.039 0.020 0.008
AJ(power var) 0.052 0.077 0.121 0.205 0.255

BNS 0.054 0.073 0.097 0.113 0.119
CPR 0.062 0.165 0.150 0.168 0.247
JO 0.070 0.106 0.163 0.247 0.327

ABD-LM 0.993 0.699 0.482 0.339 0.254
Med 0.054 0.074 0.102 0.122 0.142
Min 0.052 0.063 0.084 0.082 0.080
PZ 0.701 0.648 0.448 0.305 0.239

Table 3. Size adjusted power for varying jump intensities

λ Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.972 0.807 0.232 0.044 0.015
AJ(power var) 0.972 0.811 0.322 0.216 0.319

BNS 0.959 0.854 0.728 0.562 0.399
CPR 0.961 0.870 0.766 0.630 0.504

0.5 JO 0.966 0.853 0.730 0.574 0.445
ABD-LM 0.985 0.909 0.799 0.663 0.537

Med 0.955 0.860 0.753 0.603 0.461
Min 0.949 0.840 0.709 0.544 0.347
PZ 0.982 0.909 0.804 0.679 0.000

AJ(threshold) 0.992 0.858 0.192 0.030 0.009
AJ(power var) 0.992 0.900 0.409 0.256 0.353

BNS 0.984 0.933 0.854 0.688 0.485
CPR 0.986 0.942 0.882 0.778 0.618

2 JO 0.988 0.919 0.823 0.655 0.489
ABD-LM 0.995 0.957 0.883 0.728 0.533

Med 0.983 0.930 0.845 0.688 0.515
Min 0.981 0.924 0.829 0.645 0.420
PZ 0.994 0.960 0.907 0.800 0.000
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Table 4. Size adjusted power for a varying jump variance

σjump Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.921 0.496 0.108 0.026 0.026
AJ(power var) 0.921 0.509 0.159 0.120 0.232

BNS 0.872 0.565 0.340 0.178 0.118
0.5 CPR 0.880 0.615 0.394 0.222 0.146

JO 0.892 0.566 0.322 0.171 0.123
ABD-LM 0.964 0.698 0.448 0.245 0.128

Med 0.865 0.590 0.368 0.208 0.132
Min 0.843 0.532 0.307 0.147 0.076
PZ 0.950 0.720 0.482 0.262 0.001

AJ(threshold) 0.983 0.850 0.244 0.040 0.011
AJ(power var) 0.983 0.857 0.376 0.245 0.353

BNS 0.970 0.891 0.799 0.660 0.501
CPR 0.973 0.902 0.824 0.708 0.588

2 JO 0.977 0.891 0.794 0.665 0.519
ABD-LM 0.990 0.901 0.816 0.693 0.569

Med 0.971 0.892 0.806 0.681 0.544
Min 0.964 0.880 0.778 0.631 0.447
PZ 0.988 0.932 0.856 0.744 0.001

Table 5. Size in the presence of i.i.d. microstructure noise

σnoise Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 1.000 0.956 0.160 0.037 0.014
AJ(power var) 1.000 0.948 0.187 0.109 0.165

BNS 0.000 0.002 0.043 0.054 0.061
0.052 CPR 0.000 0.003 0.047 0.061 0.075

JO 0.366 0.017 0.064 0.113 0.185
ABD-LM 0.009 0.040 0.061 0.059 0.059

Med 0.000 0.005 0.041 0.055 0.062
Min 0.000 0.003 0.033 0.034 0.037
PZ 0.051 0.059 0.087 0.099 0.118

Table 6. Size adjusted power of the tests in the presence of i.i.d. microstructure noise

σnoise Procedure 1sec 1 min 5 min 15 min 30 min
AJ(threshold) 0.006 0.015 0.036 0.020 0.010
AJ(power var) 0.019 0.032 0.119 0.161 0.252

BNS 0.553 0.760 0.686 0.540 0.384
0.052 CPR 0.593 0.786 0.725 0.611 0.484

JO 0.5570 0.7562 0.6846 0.5547 0.4157
ABD-LM 0.851 0.820 0.738 0.605 0.466

Med 0.547 0.773 0.713 0.586 0.444
Min 0.507 0.740 0.668 0.514 0.344
PZ 0.809 0.844 0.778 0.656 0.000

Table 7. Results from combining tests using different frequencies

Procedure (BNS1 ∩BNS5)∪ (CPR1 ∩ CPR5)∪ (ABDLM1 ∩ABDLM5)∪ (Med1 ∩Med5)∪ (Min1 ∩Min5)∪
(BNS5 ∩BNS15) (CPR5 ∩ CPR15) (ABDLM5 ∩ABDLM15) (Med5 ∩Med15) (Min5 ∩Min15)

’Jump’ 0.6229 0.6772 0.7465 0.6581 0.5953
’No Jump’ 0.9574 0.9554 0.9334 0.9583 0.9674
’Spurious’ 0.0025 0.0022 0.0247 0.0027 0.0010

Procedure (PZ1 ∩ PZ5)∪ (JO1 ∩ JO5)∪
(PZ5 ∩ PZ15) (JO5 ∩ JO15)

’Jump’ 0.7744 0.7202
’No Jump’ 0.9094 0.9324
’Spurious’ 0.0140 0.0206
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Table 8. Results from combining different tests for jumps for data sampled every 5 minutes

’Procedures’ (Med5 ∩ABDLM5)∪ (CPR5 ∩BNS5)∪ (CPR5 ∩BNS5)∪ (CPR5 ∩BNS5)∪ (Med5 ∩BNS5)∪
(ABDLM5 ∩BNS5) (BNS5 ∩Med5) (BNS5 ∩ PZ5) (BNS5 ∩Min5) (BNS5 ∩ABDLM5)

’Jump’ 0.6848 0.6496 0.6658 0.6431 0.6623
’No Jump’ 0.9297 0.9434 0.9525 0.9384 0.9543
’Spurious’ 0.0119 0.0102 0.0160 0.0084 0.0133

’Procedures’ (CPR5 ∩ABDLM5)∪ (JO5 ∩BNS5)∪ (BNS5 ∩ PZ5)∪ (CPR5 ∩ PZ5)∪
(ABDLM5 ∩ PZ5) (BNS5 ∩ PZ5) (PZ5 ∩Med5) (PZ5 ∩Med5)

’Jump’ 0.7405 0.6661 0.7165 0.7150
’No Jump’ 0.9298 0.9481 0.9122 0.9028
’Spurious’ 0.0240 0.0158 0.0158 0.0104

Table 9. Proportion of days with jumps, at different sampling frequencies, as identified by the following procedures:
AJ (both versions), BNS, CPR, JO, ABD-LM, Med, Min and PZ

Company Procedure 1 min 5 min 10 min 15 min 30 min
AJ(threshold) 0.552 0.109 0.050 0.024 0.014
AJ(power var) 0.606 0.357 0.293 0.264 0.266

BNS 0.814 0.273 0.154 0.157 0.132
PG CPR 0.915 0.391 0.221 0.190 0.149

JO 0.407 0.212 0.188 0.211 0.277
ABD-LM 0.972 0.506 0.270 0.182 0.086

Med 0.484 0.174 0.144 0.152 0.140
Min 0.453 0.157 0.106 0.102 0.074
PZ 0.969 0.598 0.344 0.278 0.226

AJ(threshold) 0.534 0.094 0.043 0.020 0.014
AJ(power var) 0.592 0.330 0.274 0.236 0.237

BNS 0.765 0.253 0.196 0.191 0.142
IBM CPR 0.884 0.374 0.257 0.228 0.162

JO 0.374 0.222 0.230 0.244 0.283
ABD-LM 0.974 0.512 0.292 0.207 0.097

Med 0.446 0.174 0.193 0.193 0.156
Min 0.430 0.148 0.123 0.134 0.090
PZ 0.967 0.574 0.389 0.325 0.223

AJ(threshold) 0.548 0.090 0.037 0.031 0.015
AJ(power var) 0.596 0.317 0.261 0.252 0.263

BNS 0.708 0.237 0.175 0.155 0.119
JPM CPR 0.842 0.352 0.237 0.191 0.146

JO 0.317 0.218 0.212 0.221 0.293
ABD-LM 0.950 0.500 0.282 0.191 0.121

Med 0.318 0.167 0.169 0.152 0.132
Min 0.311 0.134 0.122 0.110 0.065
PZ 0.953 0.566 0.346 0.269 0.202

AJ(threshold) 0.563 0.107 0.049 0.034 0.014
AJ(power var) 0.680 0.368 0.298 0.269 0.310

BNS 0.754 0.213 0.137 0.153 0.118
GE CPR 0.908 0.331 0.193 0.196 0.141

JO 0.317 0.184 0.194 0.199 0.270
ABD-LM 0.955 0.461 0.259 0.186 0.098

Med 0.275 0.140 0.128 0.146 0.115
Min 0.274 0.109 0.092 0.093 0.078
PZ 0.951 0.510 0.319 0.259 0.194

AJ(threshold) 0.553 0.086 0.033 0.032 0.016
AJ(power var) 0.595 0.370 0.323 0.290 0.300

BNS 0.840 0.327 0.196 0.179 0.135
DIS CPR 0.923 0.423 0.263 0.217 0.151

JO 0.385 0.241 0.227 0.246 0.302
ABD-LM 0.978 0.541 0.271 0.179 0.101

Med 0.466 0.184 0.188 0.188 0.150
Min 0.431 0.163 0.118 0.115 0.073
PZ 0.974 0.595 0.370 0.305 0.209
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Table 10. Proportion of jumps identified by different combinations of sampling frequencies and procedures
for IBM

Procedure BNS5 ∩BNS10∪ (CPR5 ∩ CPR10)∪ ABDLM5 ∩ABDLM10)∪ (Med5 ∩Med10)∪
BNS10 ∩BNS15 (CPR10 ∩ CPR15) (ABDLM10 ∩ABDLM15) (Med10 ∩Med15)

Proportion 0.105 0.173 0.258 0.098
Procedure (Min5 ∩Min10)∪ (PZ5 ∩ PZ10)∪ (JO5 ∩ JO10)∪

(Min10 ∩Min15) (PZ10 ∩ PZ15) (JO10 ∩ JO15)
Proportion 0.055 0.327 0.148
Procedure (Med10 ∩ABDLM10)∪ (CPR10 ∩BNS10)∪ (CPR10 ∩ABDLM10)∪ (BNS10 ∩ PZ10)∪

(ABDLM10 ∩BNS10) (BNS10 ∩Med10) (ABDLM10 ∩ PZ10) (PZ10 ∩Med10)
Proportion 0.132 0.193 0.222 0.213

Table 11. Relative contribution of the continuous part of the price process (RV C) and of jumps (RV J) to
the total quadratic variation for IBM

Panel A

Year Procedure AJ(threshold) AJ(power var) BNS CPR JO ABD-LM Med Min PZ
2005 RV C 72.8 74.9 90.3 82.7 83.5 79.9 90.7 92.4 79.8

RV J 27.2 25.1 9.7 17.3 16.5 20.1 9.3 7.6 20.2
2006 RV C 67.1 68.2 81.3 77.4 81.0 74.9 81.9 83.7 74.2

RV J 32.9 31.8 18.7 22.6 19.0 25.1 18.1 16.3 25.8
2007 RV C 77.3 78.5 96.1 88.4 90.1 82.3 94.6 97.0 82.0

RV J 22.7 21.5 3.9 11.6 9.9 17.7 5.4 3.0 18.0
2008 RV C 78.3 78.4 94.6 90.1 91.2 87.7 93.4 95.9 88.0

RV J 21.7 21.6 5.4 9.9 8.8 12.3 6.6 4.1 12.0
2009 RV C 72.6 74.4 89.6 83.9 86.6 81.7 88.3 92.2 79.4

RV J 27.4 25.6 10.4 16.1 13.4 18.3 11.7 7.8 20.6

Panel B

Year Proc (BNS5 ∩ BNS10(∪ (ABDLM5 ∩ ABDLM10)∪ (Med5 ∩ Med10)∪ (PZ5 ∩ PZ10)∪ (Med10 ∩ ABDLM10)∪ (BNS10 ∩ PZ10)∪
(BNS10 ∩ BNS15) (ABDLM10 ∩ ABDLM15) (Med10 ∩ Med15) (PZ10 ∩ PZ15) (ABDLM10 ∩ BNS10) (PZ10 ∩ Med10)

2005 RV C 95.71 82.19 93.55 81.43 90.51 89.92
RV J 4.29 17.81 6.45 18.57 9.49 10.08

2006 RV C 89.17 76.15 88.08 75.04 81.89 80.66
RV J 10.84 23.85 11.92 24.97 18.11 19.34

2007 RV C 97.48 83.03 97.12 82.80 95.67 94.46
RV J 2.52 16.97 2.88 17.20 4.33 5.54

2008 RV C 97.31 88.38 96.03 88.82 94.27 92.58
RV J 2.69 11.62 3.97 11.18 5.73 7.42

2009 RV C 91.48 82.51 91.91 81.11 88.77 86.54
RV J 8.52 17.49 8.09 18.89 11.23 13.47
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Figure 1. Size based on simulated and asymptotic critical values for the SV1F model with noise variance
σnoise = .052 and for different significance levels: from left to right: 5%, 1%, .1%
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Figure 2. Size adjusted power based on simulated and asymptotic critical values for the SV1F model with jumps in the presence of noise. Significance
levels: 5%, 1%, .1%
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