157 research outputs found

    Changing Face of the Extrasolar Giant Planet, HD 209458b

    Get PDF
    High-resolution atmospheric flow simulations of the tidally-locked extrasolar giant planet, HD 209458b, show large-scale spatio-temporal variability. This is in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The planet's global circulation is characterized by a polar vortex in motion around each pole and a banded structure corresponding to ~3 broad zonal (east-west) jets. For very strong jets, the circulation-induced temperature difference between moving hot and cold regions can reach up to ~1000 K, suggesting that atmospheric variability could be observed in the planet's spectral and photometric signatures.Comment: 6 pages, 1 ps figure, 2 low-res color figures (JPEG). Figure 3 updated. Contact authors for hi-res versions of color figures. Accepted for publication in ApJ

    On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters

    Full text link
    Turbulence is ubiquitous in Solar System planetary atmospheres. In hot Jupiter atmospheres, the combination of moderately slow rotation and thick pressure scale height may result in dynamical weather structures with unusually large, planetary-size scales. Using equivalent-barotropic, turbulent circulation models, we illustrate how such structures can generate a variety of features in the thermal phase curves of hot Jupiters, including phase shifts and deviations from periodicity. Such features may have been spotted in the recent infrared phase curve of HD 189733b. Despite inherent difficulties with the interpretation of disk-integrated quantities, phase curves promise to offer unique constraints on the nature of the circulation regime present on hot Jupiters.Comment: 22 pages, 6 figures, 1 table, accepted for publication in Ap

    A shallow-water theory for annular sections of Keplerian Disks

    Full text link
    A scaling argument is presented that leads to a shallow water theory of non-axisymmetric disturbances in annular sections of thin Keplerian disks. To develop a theoretical construction that will aid in physically understanding the relationship of known two-dimensional vortex dynamics to their three-dimensional counterparts in Keplerian disks. Using asymptotic scaling arguments varicose disturbances of a Keplerian disk are considered on radial and vertical scales consistent with the height of the disk while the azimuthal scales are the full 2π2\pi angular extent of the disk. The scalings lead to dynamics which are radially geostrophic and vertically hydrostatic. It follows that a potential vorticity quantity emerges and is shown to be conserved in a Lagrangian sense. Uniform potential vorticity linear solutions are explored and the theory is shown to contain an incarnation of the strato-rotational instability under channel flow conditions. Linearized solutions of a single defect on an infinite domain is developed and is shown to support a propagating Rossby edgewave. Linear non-uniform potential vorticity solutions are also developed and are shown to be similar in some respects to the dynamics of strictly two-dimensional inviscid flows. Based on the framework of this theory, arguments based on geophysical notions are presented to support the assertion that the strato-rotational instability is in a generic class of barotropic/baroclinic potential vorticity instabilities. Extensions of this formalism are also proposed. The shallow water formulation achieved by the asymptotic theory developed here opens a new approach to studying disk dynamics.Comment: Accepted (July 21, 2008), now in final for

    A dynamical framework for the origin of the diagonal South Pacific and South Atlantic convergence zones

    Get PDF
    The South Pacific Convergence Zone (SPCZ) and South Atlantic Convergence Zone (SACZ) are diagonal bands of precipitation that extend from the equator southeastward into the Southern Hemisphere over the western Pacific and Atlantic Oceans, respectively. With mean precipitation rates over 5 mm day−1, they are a major component of the tropical and global climate in austral summer. However, their basic formation mechanism is not fully understood. Here, a conceptual framework for the diagonal convergence zones is developed, based on calculations of the vorticity budget from reanalysis and Rossby wave theory. Wave trains propagate eastward along the Southern Hemisphere subtropical jet, with initially quasi-circular vorticity centres. In the zonally sheared environment on the equatorward flank of the jet, these vorticity centres become elongated and develop a northwest-southeast tilt. Ray tracing diagnostics in a non-divergent, barotropic Rossby wave framework then explain the observed equatorward propagation of these diagonal vorticity structures toward the westerly ducts over the equatorial Pacific and Atlantic. The baroclinic component of these circulations leads to destabilisation and ascent ahead of the cyclonic vorticity anomaly in the wave, triggering deep convection because of the high sea surface temperatures in this region. Latent heat release then forces additional ascent and strong upper-tropospheric divergence, with an associated anticyclonic vorticity tendency. A vorticity budget shows that this cancels out the advective cyclonic vorticity tendency in the wave train over the SPCZ, and dissipates the wave within a day. The mean SPCZ is consequently comprised of the sum of these pulses of diagonal bands of precipitation. Similar mechanisms also operate in the SACZ. However, the vorticity anomalies in the wave trains are stronger, and the precipitation and negative feedback from the divergence and anticyclonic vorticity tendency are weaker, resulting in continued propagation of the wave and a more diffuse diagonal convergence zone

    Methane in the atmosphere of the transiting hot Neptune GJ436b?

    Get PDF
    We present an analysis of seven primary transit observations of the hot Neptune GJ436b at 3.6, 4.5 and 8 μ8~\mum obtained with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope. After correcting for systematic effects, we fitted the light curves using the Markov Chain Monte Carlo technique. Combining these new data with the EPOXI, HST and ground-based V,I,HV, I, H and KsK_s published observations, the range 0.510 μ0.5-10~\mum can be covered. Due to the low level of activity of GJ436, the effect of starspots on the combination of transits at different epochs is negligible at the accuracy of the dataset. Representative climate models were calculated by using a three-dimensional, pseudo-spectral general circulation model with idealised thermal forcing. Simulated transit spectra of GJ436b were generated using line-by-line radiative transfer models including the opacities of the molecular species expected to be present in such a planetary atmosphere. A new, ab-initio calculated, linelist for hot ammonia has been used for the first time. The photometric data observed at multiple wavelengths can be interpreted with methane being the dominant absorption after molecular hydrogen, possibly with minor contributions from ammonia, water and other molecules. No clear evidence of carbon monoxide and dioxide is found from transit photometry. We discuss this result in the light of a recent paper where photochemical disequilibrium is hypothesised to interpret secondary transit photometric data. We show that the emission photometric data are not incompatible with the presence of abundant methane, but further spectroscopic data are desirable to confirm this scenario.Comment: 19 pages, 10 figures, 1 table, Astrophysical Journal in pres

    Validation of OMI-TOMS and OMI-DOAS total ozone column using five Brewer spectroradiometers at the Iberian peninsula

    Get PDF
    This article focuses on the comparison of the total ozone column data from the Ozone Monitoring Instrument (OMI) flying aboard the NASA EOS-Aura satellite platform with ground-based measurement recorded by Brewer spectroradiometers located at five Spanish remote sensing ground stations between January 2005 and December 2007. The satellite data are derived from two algorithms: OMI Total Ozone Mapping Spectrometer (OMI-TOMS) and OMI Differential Optical Absorption Spectroscopy (OMI-DOAS). The largest relative differences between these OMI total ozone column estimates reach 5% with a significant seasonal dependence. The agreement between OMI ozone data and Brewer measurements is excellent. Total ozone columns from OMI-TOMS are on average a mere 2.0% lower than Brewer data. For OMI-DOAS data the bias is a mere 1.4%. However, the relative difference between OMI-TOMS and Brewer measurements shows a notably lower seasonal dependence and variability than the differences between OMI-DOAS and ground-based data. For both OMI ozone data products these relative differences show significant dependence on the satellite ground pixel solar zenith angle for cloud-free cases as well as for cloudy conditions. However, the OMI ozone data products are shown to reveal opposite behavior with respect to the two antagonistic sky conditions. No significant dependency of the ground-based to satellite-based differences with respect to the satellite cross-track position is seen for either OMI retrieval algorithm.This work was partially supported by Ministerio de Educación y Ciencia under Project CGL2005-05693-C03-03/CLI and by Ministerio de Ciencia e Innovación under project CGL2008-05939-C03-02/CLI

    Huygens HASI servo accelerometer: a review and lessons learned

    Get PDF
    The Servo accelerometer constituted a vital part of the Huygens Atmospheric Structure Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe's entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its technical performance through its seven-year long in-flight (or cruise) journey, and finally its performance in measuring acceleration (or deceleration) upon encountering Titan's atmosphere. The aim of this article is to review the design, ground tests, in-flight tests and operational performance of the Huygens Servo accelerometer. Techniques used for data analysis and lessons learned that may be useful for accelerometry payloads on future planetary missions are also addressed. The main finding of this review is that the conventional approach of having multiple channels to cover a very broad measurement range: from 10-6 g to the order of 10 g (where g = Earth's surface gravity, 9.8 m/s2), with on-board software deciding which of the channels to telemeter depending on the magnitude of the measured acceleration, works well. However, improvements in understanding the potential effects of the sensor drifts and ageing on the measurements can be achieved in future missions by monitoring the 'scale factor' – a measure of such sensors' sensitivity, along with the already implemented monitoring of the sensor's offset during the in-flight phase
    corecore