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ABSTRACT

There is a vast amount of information about the atmosphere available from instruments on board satellites.

One example is the Infrared Atmospheric Sounding Interferometer (IASI) instrument, which measures ra-

diances emitted from Earth’s atmosphere and surface in 8461 channels. It is difficult to transmit, store, and

assimilate such a large amount of data. A practical solution to this has been to select a subset of a few hundred

channels based on those that contain the most useful information.

Different measures of information content for objective channel selection have been suggested for appli-

cation to variational data assimilation. These include mutual information and the degrees of freedom for

signal. To date, the calculation of these measures of information content has been based on the linear theory

that is at the heart of operational variational data assimilation. However, the retrieval of information about

the atmosphere from the satellite radiances can be highly nonlinear.

Here, a sampling method for calculating the mutual information that is free from assumptions about the

linearity of the relationship between the observed radiances and the state variables is examined. It is found

that large linearization errors can indeed lead to large discrepancies in the value of mutual information. How

this new estimate of information content can be used in channel selection is addressed, with particular at-

tention given to the efficiency of the new method. It is anticipated that accounting for the nonlinearity in the

channel selectionwill be beneficial when using nonlinear data assimilationmethods currently in development.

1. Introduction

Satellites provide a wealth of information about the

current state of the atmosphere by hosting instruments

measuring the top-of-the-atmosphere radiances. In

general, the amount of data available from satellites is

more than can be practically assimilated let alone stored

and transmitted (Collard 2007). A practical solution to

this has been to select a subset of a few hundred channels

based on those that contain the most useful information

(Collard 2007; Rabier et al. 2002). Within this study we

will concentrate on the Infrared Atmospheric Sounding

Interferometer (IASI) instrument, an infrared Fourier

transform spectrometer, on board the MetOp series of

satellites in a polar orbit of Earth. IASI measures

radiances emitted from Earth’s atmosphere and surface

in 8461 channels.

Different measures of information content for objec-

tive channel selection have been suggested by Rodgers

(1996) and Rodgers (2000, 27–39) for application to

variational data assimilation. These include mutual in-

formation and the degrees of freedom for signal. To

date, the calculation of these measures of the in-

formation content has been based on the linear theory

that is at the heart of operational variational data as-

similation. However, the retrieval of information about

the atmosphere from the satellite radiances can be

highly nonlinear. To understand the importance and

potential impact of the nonlinear relationship between

satellite data and the atmospheric state, we shall first

introduce the data assimilation problem.

Data assimilation allows for satellite data and other

atmospheric observations to be combined with a nu-

merical weather prediction (NWP) model. The result,
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known as the analysis, can be used to give initial condi-

tions for the next forecast.

Many data assimilation schemes are derivable from

Bayes’s theorem, which states

p(x j y)5 p(y j x)p(x)
p(y)

. (1)

The aim is to find the posterior probability of the state

given the observation, p(x j y), when the probability of

the observation measuring the state, p(y j x), and the

probability of the state prior to the observations being

made, p(x), are known. In (1) the marginal distribution,

p(y), is often simply thought of as a normalization factor

as it is independent of x.

An adequate approximation, in many cases, to the

probability distributions p(y j x) and p(x) is a Gaussian

distribution. If it was then assumed that the observation

operator, a transformmapping from state to observation

space, was also linear, then the posterior distribution

would also beGaussian. The analysis state could then be

defined as the mode of the posterior distribution, giving

both the most likely and minimum error variance esti-

mate of the true state. This is a large simplification in the

case of satellite data assimilation, but has proven to be

useful (see, e.g., Eyre 1989).

A simple illustration of the effect of a nonlinear ob-

servation operator is given in Fig. 1. In the left-hand

panel a Gaussian likelihood is shown as a function of the

observation variable y. In the right-hand panel the

likelihood is plotted as a function of the state variable x

for the case when the observation measures the square

of the state variable; that is, y5 x2. The likelihood (solid

black line) is clearly no longer Gaussian in the state

space, with the two peaks representing the uncertainty

in the sign of x. From (1), this means that the posterior

distribution will also be non-Gaussian.

In previous work (Fowler and Van Leeuwen 2013), it

was shown that approximating a non-Gaussian error

distribution with a Gaussian (i.e., just allowing for the

first two moments) resulted in a small underestimate of

the information content of the observations when the

likelihood was in fact non-Gaussian but the observation

operator was linear. In the case of approximating a

nonlinear observation operator with its tangent linear,

the non-Gaussian structure of the likelihood in state

space is again underestimated. However, the approxi-

mation is no longer as simple as fitting a smooth

Gaussian to the non-Gaussian likelihood. This is illus-

trated in Fig. 1, where we see that the linearized estimate

of the likelihood is very poor and strongly depends on

the choice of the linearization state (dashed and dotted

lines in Fig. 1). For this reason, the results derived in

Fowler and Van Leeuwen (2013), which assumed that

the non-Gaussian distribution and its Gaussian ap-

proximation share the same first two moments, cannot

be applied here.

a. The observation operator

The mapping between the observation and the state

variable is given by the observation operator H, plus a

small measurement error «o:

y5H(x)1 «
o
. (2)

There may be uncertainty inH(x), for example, because

ofmissing processes or if the observations y are sampling

scales smaller than can be represented by the state

variables x. The latter is often referred to as represen-

tation error. However, for simplicity we shall assume

that the error in H(x) is negligible.

In this study the observations y are top-of-the-

atmosphere (TOA) brightness temperatures TB, which

can be directly related to TOA radiances LTOA using

FIG. 1. Illustration of the effect of a nonlinear observation operator on the likelihood distribution in state space:

(left) p(y j x)5N(5, 1) plotted as a function of y and (right) p(y j x), this time plotted as a function of x5
ffiffiffi
y

p
(solid

line) and as a function of the linearized estimate x5 y/2xo, when xo is 2 (dashed line) and xo is 3 (dotted line).
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Planck’s law (e.g., Salby 1996, p. 209). The state x is a

vector of temperature and specific humidity on 51 model

levels. The TOA radiances may bemodeled as a function

of the frequency n and the angle of incidence u as follows:

LTOA(n, u)5 t
s
(n, u)«

s
(n, u)B(n,T

s
)1

ð1
ts

B(n,T) dt

1 [12 «
s
(n, u)]t2s (n, u)

ð1
ts

B(n,T)

t2
dt, (3)

where ts is the surface-to-space transmittance, «s is the

surface emissivity, and B(n, T) is the Planck function

for a frequency n and temperature T (Hocking et al.

2011). Recall

B(n,T)5
2hn3

c2
1

exp
hn

kT

� �
2 1

, (4)

where k is the Boltzmann constant, h is the Planck

constant, and c is the speed of light. The transmittances

depend on atmospheric constituents of gases such as

water vapor, ozone, and carbon dioxide.

In this work RTTOV, which is a fast radiative transfer

model developed within EUMETSAT’s Satellite Ap-

plication Facility for Numerical Weather Prediction

[NWP SAF; see Hocking et al. (2011)] is used to eval-

uate (3) for each of the considered IASI channels. The

transmittances are computed using a linear regression

approach in optical depth based on the input vector

variables (in this case, temperature, humidity, and trace

gases). The accuracy of the observation operator is

fundamental in data assimilation, and channels that are

known to be poorly modeled are neglected in the as-

similation, as are observations made in poorly modeled

atmospheric conditions, for example, regions of cloud

(Chevallier et al. 2004; Pavelin et al. 2008).

b. Measuring information content

Ameasure of information content should quantify the

impact of the observations on the analysis. Mutual in-

formation (MI) measures this impact as the change in

entropy (uncertainty) when an observation is made. It is

given in terms of the prior and posterior distributions as

MI5

ð
p(y)

ð
p(x j y) ln p(x j y)

p(x)
dx dy (5)

(Cover and Thomas 1991, 13–42). An observation with a

large impact is therefore one that results in a large change

in the posterior distribution compared to the prior.

In this case, MI can be interpreted as the relative

entropy weighted with the probability of all possible

realizations of the observations, where the relative en-

tropy (RE) is defined as

RE5

ð
p(x j y) ln p(x j y)

p(x)
dx . (6)

Because of the extra integral in (5), MI is independent of

the realization of the observation random error. This is a

beneficial property as it provides ameasure of information

content based on the instrument characteristics (i.e., the

way its measurement relates to the state variable and its

error statistics) rather than the value observed. However,

as will be seen, this makes it much more costly to compute

in the case of a nonlinear observation operator.

The focus of this work is on understanding how the lin-

earization of the observation operator affects the in-

formation content of observations as calculated by mutual

information. The impact this has on channel selection for

IASI data will also provide insight into how the in-

formation content of one observation relative to another

can be changed. In section 2 we will first look at how MI

may be calculated in practice, introducing a method that

does not rely on the assumption that the observation op-

erator is near linear. In section 3 it will be shown how these

estimates of MI may be applied to the problem of channel

selection.When performing the channel selection using the

nonlinear estimate of MI, it is demonstrated that this

method may suffer detrimentally from the problem of

undersampling. This issuewill be addressed in section 4 and

in section 5 we will see how this allows us to apply the al-

gorithm to a more realistically sized problem. A summary

of the key conclusions is then finally presented in section 6.

2. Estimating mutual information

When a nonlinear observation operator is considered,

it is not possible to give an analytical expression for MI.

Assumptions must therefore be made. As already dis-

cussed, one assumption that has proved to be useful is

that the observation operator can be linearized. The

expression for MI that this leads to is given in section 2a.

Alternatively it is possible to avoid the assumption of

near linearity by sampling from the prior, p(x), and

likelihood, p(y j x), distributions and assuming that the

sample size is large enough to give an accurate approx-

imation to the posterior distribution, p(x j y), and the

marginal distribution, p(y), so that an accurate estimate

of MI may be given. This method for evaluating MI is

described in section 2b.

a. A linearized estimate

If we assume that the observation operator can be ac-

curately linearized, then the posterior and additionally

FEBRUARY 2017 FOWLER 711



the marginal distributions become Gaussian (under the

assumption that both the prior and likelihood are

Gaussian). In this case it is possible to calculate the mu-

tual information in terms of the prior and posterior error

covariances alone, B and Pa, respectively:

MIG 5
1

2
lnjBP21

a j (7)

(Rodgers 2000, 27–39). The superscript G refers to the

Gaussian approximation.

Within this linear framework, the posterior error

variance is given by Pa 5 (B21 1HTR21H)21, where H is

the linearized observation operator, usually linearized

about the analysis, which is assumed to be the mode of

the posterior, and R is the observation error covariance

matrix. This estimate of MI is therefore sensitive not

only to linearization error in the observation operator (a

function of the state) but also to the estimates of the

prior and observation error covariances and funda-

mentally the assumption that these alone are enough to

characterize the prior and likelihood.

b. A nonlinear estimate

Here, we propose a method for calculating the mutual

information without linearizing the observation operator.

To calculate (5), it is necessary to have an estimate of the

probability distributions: p(x), p(y), and p(x j y). Because
of the nonlinear mapping between the state and observa-

tion space, it is not possible in general to give an analytical

expression for p(y) and p(x j y). Instead, we propose a

sampling method for approximating these distributions.

Let p(y j x) and p(x) have Gaussian distributions with

means my and mx and covariances R and B, respectively.

Note that the proposed method is not restricted to these

assumptions, but in order to generate the initial distri-

butions, some assumptions are necessary. In fact in

section 3, when an iterative selection of the channels

with the highest MI is performed, the prior distribution

is not assumed to be Gaussian after the first iteration.

To represent p(y) and p(x j y), we shall first take M

samples from p(y j x) and N samples from p(x):

x
i
;N(m

x
,B) for i5 1, . . . ,N ,

y
j
;N(m

y
,R) for j5 1, . . . ,M . (8)

The prior distribution can now be expressed as a sum of

delta functions

p(x)’
1

N
�
N

i51

d(x2 x
i
) . (9)

Substituting (9) into (1) allows for the posterior

distribution conditioned on the jth sample from

p(y j x) to be expressed as a weighted sum of delta

functions:

p(x j y
j
)5 �

N

i51

w
i,j
d(x2 x

i
), (10)

where these weights are given by

w
i,j
5
p(y

j
j x

i
)

Np(y
j
)
. (11)

Here, p(yj j xi) is evaluated using the prescribedGaussian

distribution. It is then assumed that the sample from p(x)

is large enough to imply

p(y
j
)5

ð
p(x, y

j
) dx. (12)

Using Bayes’s theorem and (9), we see that this can be

evaluated as

p(y
j
)5

ð
p(y

j
j x)p(x) dx5 1

N
�
N

i51

p(y
j
j x

i
) . (13)

This has the effect of normalizing the weights so that

�N

i51wi,j 5 1.

Given (10) and (9), it is now possible to evaluate the

relative entropy given by the jth sample from p(y j x).
Substituting these expressions into (6), the relative en-

tropy for this sample from the likelihood is given by

RE
j
5 �

N

i51

w
i,j
ln(Nw

i,j
). (14)

It is possible to express RE in this form because of the

collocation of the sample representing the prior and

posterior. Such an expression would therefore not be

possible if a direct sample from the posterior was made,

for example, using a Markov chain Monte Carlo type

method, as in Tamminen and Kyrölä (2001). Performing

this calculation for each of the M samples from the

likelihood allows us to build up the statistics for p(y) to

then be able to calculate the mutual information.

This estimate of MI is clearly more computationally

expensive than the linear estimate given by (7). How-

ever, given a large enough sample, this estimate should

have amuch smaller error, leading to a better evaluation

of the ‘‘true’’ information content of the satellite chan-

nels. In doing so we can then assess how detrimental the

linear approximation is.

c. Mutual information of IASI channels

Before comparing the two different estimates of MI,

we begin by looking at the convergence rate of the
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sampling estimate of MI described in section 2b. From

experiments (not shown) it is known that the sample

estimate of MI is most sensitive to the size of N rather

thanM. For this reasonMwill be kept fixed at a value of

100 for the remainder of the experiments and the sen-

sitivity of MI to the value ofN alone is now studied. The

B and R error covariance matrices, necessary for gen-

erating the initial samples, have been provided by the

NWP SAF 1D-Var package. The background error

standard deviations for temperature and humidity are

given in Fig. 2 and the correlation structure is given in

Fig. 3. To represent R, a diagonal matrix is used. The

square root of the diagonal elements of R is given as a

function of wavenumber in Fig. 4. Note that although

the error in the measured radiance value is assumed

invariant under scene temperature (average brightness

temperature), the corresponding error in the brightness

temperature is not. The ‘‘true’’ atmospheric profile,

from which the samples are generated, represents mid-

latitude cloud-free conditions.

Figure 5 shows the convergence of MI with increasing

sample size N for 10 different channels of IASI (stars).

For each choice of N, MI has been estimated 10 times

with different realizations of the random error in the

observations and the prior estimate.Most channels seem

to have begun to converge byN5 2000. It has therefore

been decided from these experiments to initially use

N 5 2000 to compute MI for all channels to compare to

the linear estimate, and then in section 3 to useN5 3200

when performing the channel selection, for which

FIG. 2. Background error standard deviations.

FIG. 3. Background error correlations for (a) temperature and (b) humidity. There are nomultivariate correlations.
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sampling error may have a greater impact as we are in-

terested not only in the absolute value of MI but the

value relative to the other channels.

Details of the 10 IASI channels given in Fig. 5 can be

found in Table 1. The first column in Table 1 refers to the

channel selection experiments performed in section 3.

The second column gives the IASI channel number

(ranging from 1 to 8461). In the third and fourth col-

umns, details of the wavelength and wavenumber are

given. The final column refers to the order in which the

channels were selected by Collard (2007). ‘‘Temp’’ is the

initial channel selection in which channels most sensi-

tive to water vapor or ozone were removed so that

the temperature information primarily comes from

the ‘‘relatively linear’’ CO2 channels.A total of 65 channels

were selected by Collard (2007) in this initial selection.

‘‘Main’’ refers to the channel selection when water vapor

channels were reintroduced. These channels will be used

in section 3 to develop the method for optimal channel

selection based on the nonlinear estimate of MI.

For these 10 channels we now compare the sample

estimate of MI to the linear estimates, from section 2a.

In Fig. 5 the linear estimates to MI calculated as

0:5 lnjIn 1BHTR21Hj [see (7)] are given by the lines. The
three lines represent estimates when the observation

operator has been linearized about (i) xtruth (solid line),

(ii) xtruth 2sb (dashed line), and (iii) xtruth 1sb (dotted

line), where sb is the background error standard de-

viation (square root of the diagonal elements of B). In

practice, the observation operator is linearized about

the analysis, which is assumed to be much closer to the

truth than xtruth 6sb.

The accuracy of the linear estimate of MI (as com-

pared to the sample estimate) and its sensitivity to the

linearization state differs for each of the channels. For

some channels (e.g., channel 3244) the sample estimate

is within the range of the linear estimate, indicating that

the observation operator may be considered near linear,

while for others (e.g., channel 95) the sample estimate is

well outside the range of the linear estimate.

These results give an indication of the size of the error

caused by the linear estimate to the observation opera-

tor. This can be corroborated by plotting a measure of

the linearization error of the observation operator for

each of the channels. The linearization error can be

quantified as

«
lin
5H(x1 dx)2 H(x)2Hdx . (15)

This can be deemed adequately small if «lin is much

smaller than the observation error. In incremental var-

iational data assimilation, the perturbation dx can be

expected to decrease with iteration as the nonlinear cost

function is minimized (Courtier et al. 1994).

In Fig. 6, the linearization error normalized by the

standard deviation of the observation error is plotted

as a function of perturbation size dx. In the experiment

shown, dx has been chosen to be a fraction of the stan-

dard deviation of the background error. This is an ar-

bitrary choice to illustrate that a large error in the linear

estimate to mutual information (see Fig. 5) corresponds

to a large linearization error. In reality this does not give

profiles consistent with the assumed background errors

as it does not take into account the vertical correlation

seen in Fig. 3 and as suchmay overestimate the error due

to the linearization that will be seen in practice.

In Fig. 7 MI has been computed for all of the IASI

channels using the two approximations. Channels with

FIG. 4. The observation error standard deviations as a function of wavenumber for all 8461

IASI channels. Red dashed linesmark the 10 channels used to illustrate the proposedmethod in

section 3. The gray lines mark the 100 channels used in section 5.
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large sensitivities to the surface, water vapor, and ozone

are marked at the top of Fig. 7. Some of these channels

are removed in the preselection runs detailed by Collard

(2007). Also indicated at the bottom of the figure are the

blacklist channels due to large sensitivities to trace gases

(CH4, CO, and N2O), solar irradiance, and channels in

the CO2 band that are affected by non–local thermo-

dynamic equilibrium (LTE) effects. The difference be-

tween the two estimates indicates regions where

nonlinearity for this problem is larger (e.g., water-

sensitive channels, which could be expected as the de-

pendence of the temperature Jacobian on humidity is

FIG. 5. MI is approximated using the sampling method (blue stars, discussed in section 2b) for different random

realizations of the prior and likelihoodwhenM5 100 andN is allowed to vary. The lines show the linear estimate of

MI [see (7)] when the observation operator has been linearized about the truth: xtruth (solid line), xtruth 2sb (dashed

line), and xtruth 1sb (dotted line).
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not accounted for in the linear approximation). When

the linear estimate of MI is larger than the sample esti-

mate ofMI, this could be indicative of a situation similar

to that illustrated in Fig. 1. In this case p(x j y) has amuch

larger variance than the linear estimate, so we can ex-

pect that, despite the non-Gaussian structure, the in-

formation in the observations is overestimated by the

linearization of the observation operator. However,

when the linear estimate of MI is smaller than the

sample estimate of MI, this could be indicative of a sit-

uation when the linear estimate of the variance is similar

to the true variance but lacks the structure of the true

posterior density function. Note that only temperature

and humidity are part of the state vector.

3. Channel selection for IASI instrument

In the last section it was shown that there are indeed

instances when the linear and nonlinear estimates of

mutual information can provide very different results.

The impact these differences will have on applications

such as channel selection will depend on how the rela-

tive values of mutual information between the different

channels differs for the two different estimates and how

this affects the amount of independent information

measured in the different channels.

Amethod similar to that of Collard (2007) and Rabier

et al. (2002) can be followed for the channel selection:

1) Initially channels that are known to be poorly

modeled by RTTOV are removed from the channels

available for selection (e.g., those dominated by trace

species); see Fig. 7.

2) ThenMI is calculated for eachof the remaining channels.

3) The channel with the greatest MI is selected.

4) The prior is then updated given the information from

this channel choice.

5) Steps 2–4 of the channel selection process are re-

peated until the required number of channels has

been selected.

This is a time-consuming procedure that is per-

formed offline. To deal with the nonlinearity, Collard

(2007) and Rabier et al. (2002), while using a linear

estimate of MI, repeated this channel selection pro-

cedure for a number of different atmospheric states and

averaged the results. In the comparison that follows,

between our sampling method and the linear method,

we only use one true state to highlight the effects of the

nonlinearity.

It is also important to note that we are unable to take

into account interchannel error correlations in either

the sampling or the linear method because of the se-

quential nature of the two methods. The effect of sys-

tematic errors in the radiative transfer model on the

linear channel selection method was studied by

Ventress andDudhia (2014) but how to include these in

the sampling method is left for future work; one pos-

sibility is to transform the observations using R21/2 so

that in the transformed space the observations remain

uncorrelated.

TABLE 1. Channels used within the selection in section 3. The rightmost column refers to the order in which the channels were selected

by Collard (2007).

Channel selection No. IASI channel No. Wavelength (mm) Wavenumber (cm21) Collard (2007)

1 92 15.0 668 Temp 2

2 95 14.9 669 Temp 5

3 345 13.7 731 Temp 3

4 434 13.2 753 Temp 4

5 2239 8.3 1205 Temp 1

6 3049 7.1 1407 Main 3

7 3105 7.0 1421 Main 2

8 3244 6.9 1456 Main 1

9 3446 6.6 1506 Main 4

10 5381 5.0 1990 Main 5

FIG. 6. Linearization error «lin normalized by the observation

error standard deviation so as a function of perturbation size (a

fraction of the background error standard deviation sb). The

dashed line shows «lin/so 5 1.
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Some initial channel section results

An initial attempt at channel selection has been

performed for a subset of 10 IASI channels (see Table 1).

These channels have been chosen as they were con-

sidered to have a large information content by

Collard (2007). The weighting functions of the 10

channels used are given in Fig. 8. It can be seen that

these channels are sensitive to temperature and

humidity throughout the troposphere as well as

providing information about temperature for the

stratosphere.

In Fig. 9, MI and the subsequent channel selection

are shown for when (i) the sample estimate of MI is

used and (ii) when the linear estimate of MI is used

with H linearized about the truth. As suggested by

Fig. 5, the values of MI for the initial selection (first

column) can differ significantly between the two dif-

ferent estimates. In addition to this the amount of

independent information in the channels differs be-

tween the two estimates, so that although the first

channel to be selected is the same in each case the

remaining channels are selected in a different order.

For example channel number 10 is deemed to be the

third most important channel using the linear method

but only the fifth most important using the sampling

method.

In Fig. 10, the effective sample size ess of the sample

estimate is shown for the first realization from the like-

lihood. This is defined as

ess
1
5

1

�
N

i51

(w
i,1
)2

(16)

and gives an estimate of the number of samples that have

any significance in approximating the posterior distribu-

tion. If the weights are all equal (i.e., wi,j 5 1/N " i, j),

then the effective sample size isN. As the variance of the

weights used to describe the posterior distribution in (11)

increases, ess decreases.

It is seen that the channel selected corresponds to the

largest reduction in ess because this channel has had the

greatest impact in refining the area of high probability.

The samples at the center of the distribution, where

the probability is high, are given a large weight while the

samples on the periphery of the distribution, where the

probability is low, are given a small weight and are ef-

fectively discarded.

After the first channel is selected, ess reduces

quickly until at the end of the selection process there

is only one sample with any significance in repre-

senting the posterior. Therefore, the error in the

estimate of MI used for channel selection becomes

progressively worse as each channel is selected.

The size of the error in the sampled estimate after the

first channel selection indicates that it is no longer

useful for subsequent channel selection, as shown in

Fig. 5. This problem will increase as the number of

channels to be selected increases and the amount of

FIG. 7. MI approximated using the sampling method (blue dots; discussed in section 2b) when M 5 100 and N 5 2000 and using the

linear method [red dots; see (7)] when the observation operator has been linearized about the truth. Red dashed lines mark the 10

channels used to illustrate the proposed method in section 3. The gray lines indicate the 100 channels to be used for selection in

section 5.
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information available in consecutive observations is

increased.

4. Improving the effective sample size

As seen in Fig. 5, the nonlinear estimate of mutual

information is sensitive to the sample size. We would

therefore like to have some control over the effective

sample size so that it remains close to constant

throughout the channel selection procedure. For this

reason increasing the sample size is not the solution; first

an unnecessarily (and unfeasibly) high sample size at the

beginning of the channel selection would be needed in

order for the effective sample size to be adequate by the

end of the channel selection, and second the accuracy of

the MI estimate would change throughout the channel

selection process as the effective sample size decreases.

An alternative to assimilating one channel at a time

and resampling from the posterior after each channel is

selected is to assimilate an increasingly large number of

channels. In practice this means that on each round an

extra channel is assimilated in addition to those already

selected, but the number to consider is still reduced by

one. This would have several advantages, namely there

would be no need to resample from the posterior

distribution as the prior would be unchanged for each

channel selection, and it would also allow for the in-

terchannel error correlations to be accounted for.

However, the issues with diminishing sample size are

still prevalent, as illustrated in Figs. 11–13. It is clear that

as the number of channels assimilated in one go in-

creases, the number of samples needed to estimate MI

also increases, as indicated by the effective sample size.

For example when a sample size of 8000 is used,

the effective sample size after assimilation ranges

from about 2000 to 2500 when 1 channel is assimila-

ted (Fig. 11), 10 to 130 when 5 channels are assimilated

(Fig. 12), and 1 to 9 when 10 channels are assimilated

(Fig. 13). It is therefore unfeasible to estimate MI for all

channels at one time.

The problem of a small effective sample size is a

common problem in the particle filtering technique. As

such, there is a large amount of literature discussing

possible options for overcoming this problem [see Van

Leeuwen (2009) for a review of proposed techniques].

One idea would be to resample from the current

sample after each channel selection, replicating samples

with a large weight and deleting samples with a small

weight (see Gorden et al. 1993). This idea has been used

extensively in the particle filter (e.g., Kim et al. 2003; Lui

FIG. 8. Weighting functions normalized by the observation error standard deviation, for the 10 channels used in the

channel selection. Shown are sensitivities to changes in (a) temperature and (b) humidity.
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and Chen 1998; Van Leeuwen 2003), but because we do

not include a stochastic model (dynamic or otherwise),

there is no way for identical samples to differ as the

channel selection progresses. As such, the accuracy of

the estimate of MI would not increase despite the value

of ess remaining high.

A more sophisticated approach would be to make use

of a proposal density function (e.g., Van Leeuwen 2010,

2011); the idea being that we sample from a proposal

density function that is similar to the posterior distri-

bution that we wish to represent. This generally makes

use of the observations to ‘‘draw’’ the sample toward the

region of high likelihood. This is complicated in the case

of channel selection because (i) we do not know a priori

which channel will be selected and (ii) we need to av-

erage over the observation space. Therefore, this tech-

nique would involve a prohibitively large number of

forward runs of RTTOV.

An alternative approach would be to generate a new

sample from the prior updated after each channel se-

lection. This would reset the sample size back to N after

each channel is selected. To do this, we would need to

fit a PDF to our weighted sample representation of the

posterior after each channel selection is made. Because

of the nonlinear observation operator, we expect the

posterior to be non-Gaussian, and we would like to keep

any non-Gaussian structure within our sample. As such,

we wish to consider moments greater than the first and

second order.

We propose fitting a Gaussian mixture to the sample

with the number of Gaussian components chosen such

that the Akaike information criterion (AIC) is at a

minimum (Burnam andAnderson 2002, 60–64) but each

component is represented by a large enough sample to

ensure a good estimate of the covariancematrix for each

of the Gaussian components.

The idea of using a Gaussian mixture model has been

applied to the particle filter by Smith (2007) and Hoteit

et al. (2012). A similar approach, which we do not con-

sider, is resampling using kernel density estimation (e.g.,

Musso et al. 2001).

The Gaussian mixture model is given by

p(x)5 �
G

k51

a
k
N(m

k
,S

k
), (17)

where G is the number of Gaussian components. We

therefore need to find 3G parameters: ak (the weights of

each of the Gaussian components),mk (the means of the

Gaussian components), and Sk (the covariances of the

Gaussian components). These parameters may be found

using the expectation–maximization (EM) method [see

Bishop (2006, 424–435) for an introduction].

FIG. 10. Effective sample size of the posterior distribution: circles,

ess, 100; crosses, ess, 50; and stars, ess, 10.

FIG. 9. Channel selection for a subset of 10 channels given in Table 1. Channel selections using (a) a sample estimate

of MI and (b) a linear estimate of MI. The colors represent the value of MI estimated in each case.
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Once the Gaussian mixture has been fitted to the

sample, it is straightforward to draw a new sample of size

N from this distribution. Each of the new samples has

equal weight and so the effective sample size is returned

to N.

a. Fitting a Gaussian mixture in practice

In practice the fitting of a Gaussian mixture is not

straightforward and may be performed in many differ-

ent ways. Here, the method used to provide the fol-

lowing results, which makes use of the MATLAB

statistics toolbox function ‘‘fitgmdist,’’ is outlined. In

many cases themethods are chosen for their pragmatism

and the author accepts that different approaches could

be equally valid and perhaps better.

To begin the process of fitting a distribution to the

weighted sample, a new sample is generated that is

equally weighted. This can be done in many different

ways but here probabilistic resampling is used (Gorden

et al. 1993). As discussed above, this is simply a method

for replicating samples with a high weight and deleting

those with a small weight, which only leads to an artifi-

cial increase in the effective sample size.

Once the probabilistic resampling is complete, an

initial estimate of the parameters is needed as a first

guess for the iterative EM method. Here, we use a

randomly selected sample point to represent the means,

the weights are uniform (each equal to 1/G), and co-

variance matrices are initially diagonal with variances

equal to the variance of the sample. Alternatively, a

k-clustering algorithm can be used, which assigns each of

the samples to different groups [again see Bishop (2006,

424–435), for an introduction]. The parameter estimates

are then refined by iterating the EM method 100 times.

To decide how many Gaussian components are nec-

essary to describe the sample, the Gaussian mixture

model is estimated for an increasing number of com-

ponents until one group has too few members (i.e.,

Nk ,Nmin). The model with the smallest AIC is then

selected. Within this work each component is repre-

sented by at least 204 samples (Nmin). This number has

been chosen somewhat arbitrarily but should be large

enough to ensure a good estimate of the covariance

matrix for each of the Gaussian components (our state

size is 102), while still being small enough to allow for a

good deal of structure in the fitted distribution. In ad-

dition to this we also add a small regularization term of

1025 to the diagonal of the covariancematrices to ensure

that the estimated covariances are always positive

definite.

An illustration of the process on an artificially

generated sample is shown in Figs. 14 and 15. This

FIG. 11. (left) The convergence of MI of one channel as sample size increases. (right) The effective sample size of

the updated sample.
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two-dimensional sample has a size of 400 but has been

weighted according to its distance from the point (0, 1)

marked by the red star. This results in an effective sample

size of 197. In the right-hand panel of Fig. 14 a new

sample is generated using probabilistic resampling. The

density of the sample is difficult to see from the scatter-

plot, as many of the sample points are duplicates and

therefore cannot be distinguished from each over. In

Fig. 15 we see that the GM resampling step has decided

that the distribution can be accurately described by three

components, illustrated by the different colors. This new

sample is seen to have much better coverage of the high-

probability regions and the marginal frequency histo-

grams for the two variables match closely to the original

sample. In Table 2 the first four moments of the original

sample and the sample from the GM fit are given.

b. Applying the sampling method with Gaussian
mixture resampling to the channel selection
problem

In Fig. 16 the channel selection is repeated for the 10

channels; this time resampling from a Gaussian mixture

distribution after each channel is selected. After the first

channel is selected there are some differences in the

value of the sample estimate to MI (cf. to Fig. 9); in

particular, we see that although the first six and last four

channels to be selected are the same in each case, the

order that they have been selected in has changed. The

substantial increase in the effective sample size after

each channel selection is made allows for greater con-

fidence in the statistical estimates. As such, this method

should be necessary when performing channel selection

for the full list of available channels.

5. Application to a larger-sized problem

In the previous section we developed a sampling method

to allow for the objective selection of channels basedon their

mutual information. Within this section the adapted algo-

rithmwill be applied to a larger-sized problem.Applying the

method to the full IASI channel set is beyond the scope of

this paper, in which the aim is the demonstration of a new

method. However, it is important to note that the method

can be run on parallel processors, so applying it to the full-

sized problem is feasible and will be addressed in future

work. In this section the channel selection algorithm will be

applied to a channel set of size 100, given by the first 100

channels selected byCollard (2007) (in both the preselection

and the main run).

The 100 channels used within this experiment are

shown in Fig. 7 by the gray vertical lines. We see that the

majority of the channels are in the 670–710 cm21 region

FIG. 12. (left) The convergence of MI of five channels as the sample size increases. (right) The effective sample size

of the updated sample.
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because of their sensitivity to the upper troposphere and

lower stratosphere. This is explained in Collard (2007)

to be related to the relatively high a priori temperature

errors in this region compared to the troposphere.

In Fig. 17, 50 of the 100 channels available are selected

using both the sampling and linear approximations. It

can be seen that the sampling method appears to have

chosen a larger spread of the wavenumbers available

FIG. 14. Illustration of the probabilistic resampling step. (left) The original weighted sample is shown (the size of

themarker is proportional to its weight). (right) A new sample has been generated using probabilistic resampling so

that the sample is equally weighted. As this involves deleting samples with a small weight and duplicating sample

members with a high weight, the increase in effective sample size is clearly artificial; the histograms show the

frequency of each of the variables.

FIG. 13. (left) The convergence ofMI of 10 channels as sample size increases. (right) The effective sample size of the

updated sample.
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than the linear method. For example, 26 of the channels

selected by the linear method are in the 600–800 cm21

band whereas only 20 are selected in this band by the

sampling method.

The mutual information of the selected channels is

given in Fig. 18 for each of the two selection methods. It

is clear that the sampling method quantifies there to be

less information in the channels than the linear methods

for the first few channels selected, but as the channel

selection progresses, both estimates diagnose a similar

amount of additional information in the remainder of

the channels selected.

6. Discussion

Satellite observations are a nonlinear function of

the atmospheric state variables of interest. As such, a

linear estimate of their information content may be

erroneous. Within this paper we have illustrated the

potential effect of assuming a linear relationship be-

tween the observations and state variables by looking

at how this can change the choice of channels for data

assimilation.

Many different measures of information content

have been used for channel selection. We have fo-

cused on mutual information, as this takes into ac-

count the impact of the observations on the full

posterior density function not just the first two mo-

ments. To estimate mutual information, a sampling

technique that is free from assumptions about linear-

ity has been developed. This has shown that for some

channels the linear approximation is indeed poor

and can lead to a different interpretation of the

observation’s value.

To obtain a good estimate of the mutual information,

the sample size needs to remain high throughout the

channel selection process. This was a fundamental flaw

with the original scheme proposed as the effective

sample size can be seen to decrease as the number of

channels selected is increased and the region of high

probability is reduced. This problem can be alleviated by

fitting a Gaussian mixture to the weighted sample after

FIG. 15. Illustration of how a GM distribution is fitted to the equally weighted sample generated in Fig. 14 and

a new sample is generated. (left) Samples from three different Gaussian distributions with different proportions are

shown. (right) The same sample, but without distinction between the different groups, is given; the histograms show

this sample to be a good match to the original sample but the effective sample size has increased.

TABLE 2. Comparison between the first four moments calculated from the original sample and the GM resample for the illustrations in

Figs. 14 and 15.

Variable

Original sample GM resample

m s Skewness Kurtosis m s Skewness Kurtosis

x1 0.971 2.36 0.447 2.55 0.982 2.40 0.411 2.15

x2 0.864 1.44 0.560 3.39 0.881 1.42 0.600 3.88
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each channel has been selected. Resampling from this

given distribution resets the effective sample size back

to the chosen value N.

In the previous studies of Collard (2007) and Rabier

et al. (2002), the channel selection was performed

‘‘offline,’’ giving an optimal set of channels over a range

of atmospheric conditions. The channel list was then

averaged, for example, by taking the most frequently

selected channels, to give a list that could be applied to

all atmospheric conditions. This helps to reduce some

of the effect of the nonlinearity. An advantage of the

proposed sampling method is that, by accounting ex-

plicitly for the nonlinearity, it is possible to give an

optimal channel list for a specific prior distribution.

However, it may be possible to identify different clas-

ses of prior distribution that lead to a similar channel

selection allowing for the computations to be per-

formed offline.

It is important to note that taking into account the

nonlinearity of the observation operator in the channel

selection is only beneficial if this is consistent with the

way the observations are to be assimilated, that is, if the

observation operator is not assumed to be linear in

the assimilation method. There is currently much in-

terest in developing data assimilation techniques appli-

cable to the geosciences in which the assumption of

linearity and Gaussian error statistics is relaxed. The

author therefore anticipates the need to reassess the

information content of observations in these advanced

data assimilation systems.

Acknowledgments. The author would like to thank

Peter Jan van Leeuwen and Stefano Migliorini for their

valuable feedback on this manuscript. I would also like

to thank Christina Prates for her help with the setup of

RTTOV and Andrew Collard for providing me with the

FIG. 17. Channels selected by the two different methods: sampling (blue) and linear approxi-

mation (red). The available channels for selection are represented by the gray lines.

FIG. 16. (a) Channel selection using sample estimate of MI with GM resampling (the colors represent the value of

MI estimated). (b) Effective sample size of the posterior distribution before GM resampling is applied.

724 MONTHLY WEATHER REV IEW VOLUME 145



channel list used in his original paper. Thanks also go to

the anonymous reviewers of a previous version of this

manuscript. This work has been funded under the ‘‘ESA

Advanced Data Assimilation Methods’’ project, con-

tract ESRIN 4000105001/11/I-LG, and as part of

NERC’s support for the National Centre of Earth

Observation (NCEO).

REFERENCES

Bishop, C., 2006: Pattern Recognition and Machine Learning.

Springer, 738 pp.

Burnam, K. P., and D. R. Anderson, 2002: Model Selection and

Multimodel Inference: A Practical Information-Theoretic Ap-

proach. 2nd ed. Springer, 488 pp.

Chevallier, F., P. Lopez, A. M. Tompkins, M. Janisková, and

E. Moreau, 2004: The capability of 4D-Var systems to assim-

ilate cloud-affected satellite infrared radiances.Quart. J. Roy.

Meteor. Soc., 130, 917–932, doi:10.1256/qj.03.113.
Collard, A. D., 2007: Selection of IASI channels for use in nu-

merical weather prediction. Quart. J. Roy. Meteor. Soc., 133,

1977–1991, doi:10.1002/qj.178.

Courtier, P., J.-N. Thépaut, andA. Hollingsworth, 1994: A strategy

for operational implementation of 4D-Var, using an in-

cremental approach. Quart. J. Roy. Meteor. Soc., 120, 1367–

1387, doi:10.1002/qj.49712051912.

Cover, T. M., and J. A. Thomas, 1991: Elements of Information

Theory. Wiley Series in Telecommunications, John Wiley and

Sons, 542 pp.

Eyre, J. R., 1989: Inversion of cloudy satellite sounding radiances

by nonlinear optimal estimation. I: Theory and simulation for

TOVS. Quart. J. Roy. Meteor. Soc., 115, 1001–1026,

doi:10.1002/qj.49711548902.

Fowler, A. M., and P. J. Van Leeuwen, 2013: Measures of obser-

vation impact in data assimilation: The effect of a non-

Gaussian measurement error. Tellus, 65, 20035, doi:10.3402/

tellusa.v65i0.20035.

Gorden, N. J., D. J. Salmond, and A. F. M. Smith, 1993: Novel

approach to nonlinear/non-Gaussian Bayesian state estima-

tion. IEEE Proc., 144, 107–113, doi:10.1049/ip-f-2.1993.0015.
Hocking, J., P. Rayer, R. Saunders, M. Marticardi, A. Geer, and

P. Brunel, 2011: RTTOV v10 users guide. NWP SAF Tech.

Rep. NWPSAF-MO-UD-023, 92 pp. [Available online at

http://nwpsaf.eu/oldsite/deliverables/rtm/docs_rttov10/users_

guide_10_v1.5.pdf.]

Hoteit, I., X. Luo, and D.-T. Pham, 2012: Particle Kalman filtering:

A nonlinear Bayesian framework for ensembleKalman filters.

Mon. Wea. Rev., 140, 528–542, doi:10.1175/2011MWR3640.1.

Kim, S., G. L. Eyink, J.M.Restrepo, F. J. Alexander, andG. Johnson,

2003: Ensemble filtering for nonlinear dynamics. Mon. Wea.

Rev., 131, 2586–2594, doi:10.1175/1520-0493(2003)131,2586:

EFFND.2.0.CO;2.

Lui, J. S., and R. Chen, 1998: Sequential Monte Carlo methods for

dynamical systems. J. Amer. Stat. Assoc., 90, 567–576,

doi:10.2307/2669847.

Musso, C., N. Oudjane, and F. Le Gland, 2001: Improving regu-

larized particle filters. Sequential Monte Carlo Methods in

Practice, A. Doucet, N. de Freitas, and N. Gordon, Eds.,

Springer, 247–271.

Pavelin, E. G., S. J. English, and J. R. Eyre, 2008: The assimilation

of cloud-affected infrared satellite radiances for numerical

weather prediction.Quart. J. Roy. Meteor. Soc., 134, 737–749,

doi:10.1002/qj.243.

Rabier, F., N. Fourrié, D. Chafäi, and P. Prunet, 2002: Channel

selection methods for Infrared Atmospheric Sounding In-

terferometer radiances.Quart. J. Roy.Meteor. Soc., 128, 1011–

1027, doi:10.1256/0035900021643638.

Rodgers, C. D., 1996: Information content and optimisation of high

spectral resolution measurements. Optical Spectroscopic

Techniques and Instrumentation for Atmospheric and Space

Research II, P. B. Hays and J. Wang, Eds., International So-

ciety for Optical Engineering (SPIE Proceedings, Vol. 2830),

136–147, doi:10.1117/12.256110.

——, 2000: Inverse Methods for Atmospheric Sounding. Series on

Atmospheric, Oceanic and Planetary Physics, Vol. 2, World

Scientific Publishing, 256 pp.

Salby, M. L., 1996: Fundamentals of Atmospheric Physics. Aca-

demic Press, 627 pp.

Smith, K. W., 2007: Cluster ensemble Kalman filter. Tellus, 59A,

749–757, doi:10.1111/j.1600-0870.2007.00246.x.

Tamminen, J., and E. Kyrölä, 2001: Bayesian solution for nonlinear
and non-Gaussian inverse problems by Markov chain Monte

Carlo method. J. Geophys. Res., 106, 14 377–14 390,

doi:10.1029/2001JD900007.

Van Leeuwen, P. J., 2003: A variance-minimizing filter for large-

scale applications. Mon. Wea. Rev., 131, 2071–2084,

doi:10.1175/1520-0493(2003)131,2071:AVFFLA.2.0.CO;2.

——, 2009: Particle filtering in geophysical systems. Mon. Wea.

Rev., 137, 4089–4114, doi:10.1175/2009MWR2835.1.

——, 2010: Nonlinear data assimilation in geosciences: An ex-

tremely efficient particle filter. Quart. J. Roy. Meteor. Soc.,

136, 1991–1996, doi:10.1002/qj.699.

——, 2011: Efficient non-linear data assimilation in geophysical

fluid dynamics. Comput. Fluids, 46, 52–58, doi:10.1016/

j.compfluid.2010.11.011.

Ventress, L., and A. Dudhia, 2014: Improving the selection of IASI

channels for use in numerical weather prediction. Quart.

J. Roy. Meteor. Soc., 140, 2111–2118, doi:10.1002/qj.2280.

FIG. 18. Change inMI as the channel selection progresses: sampling

method (blue) and linear approximation (red).

FEBRUARY 2017 FOWLER 725

http://dx.doi.org/10.1256/qj.03.113
http://dx.doi.org/10.1002/qj.178
http://dx.doi.org/10.1002/qj.49712051912
http://dx.doi.org/10.1002/qj.49711548902
http://dx.doi.org/10.3402/tellusa.v65i0.20035
http://dx.doi.org/10.3402/tellusa.v65i0.20035
http://dx.doi.org/10.1049/ip-f-2.1993.0015
http://nwpsaf.eu/oldsite/deliverables/rtm/docs_rttov10/users_guide_10_v1.5.pdf
http://nwpsaf.eu/oldsite/deliverables/rtm/docs_rttov10/users_guide_10_v1.5.pdf
http://dx.doi.org/10.1175/2011MWR3640.1
http://dx.doi.org/10.1175/1520-0493(2003)131<2586:EFFND>2.0.CO;2
http://dx.doi.org/10.1175/1520-0493(2003)131<2586:EFFND>2.0.CO;2
http://dx.doi.org/10.2307/2669847
http://dx.doi.org/10.1002/qj.243
http://dx.doi.org/10.1256/0035900021643638
http://dx.doi.org/10.1117/12.256110
http://dx.doi.org/10.1111/j.1600-0870.2007.00246.x
http://dx.doi.org/10.1029/2001JD900007
http://dx.doi.org/10.1175/1520-0493(2003)131<2071:AVFFLA>2.0.CO;2
http://dx.doi.org/10.1175/2009MWR2835.1
http://dx.doi.org/10.1002/qj.699
http://dx.doi.org/10.1016/j.compfluid.2010.11.011
http://dx.doi.org/10.1016/j.compfluid.2010.11.011
http://dx.doi.org/10.1002/qj.2280

