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Abstract 

The Servo accelerometer constituted a vital part of the Huygens Atmospheric Structure 

Instrument (HASI): flown aboard the Huygens probe, it operated successfully during the probe’s 

entry, descent, and landing on Titan, on 14th January 2005. This paper reviews the Servo 

accelerometer, starting from its development/assembly in the mid-1990s, to monitoring its 

technical performance through its seven-year long in-flight (or cruise) journey, and finally its 

performance in measuring acceleration (or deceleration) upon encountering Titan’s atmosphere. 

 

The aim of this article is to review the design, ground tests, in-flight tests and operational 

performance of the Huygens Servo accelerometer. Techniques used for data analysis and lessons 

learned that may be useful for accelerometry payloads on future planetary missions are also 

addressed. 

 

The main finding of this review is that the conventional approach of having multiple 

channels to cover a very broad measurement range: from 10-6 g to the order of 10 g (where g = 

Earth’s surface gravity, 9.8 m/s2), with on-board software deciding which of the channels to 

telemeter depending on the magnitude of the measured acceleration, works well. However, 

improvements in understanding the potential effects of the sensor drifts and ageing on the 

measurements can be achieved in future missions by monitoring the ‘scale factor’ – a measure of 

such sensors’ sensitivity, along with the already implemented monitoring of the sensor’s offset 

during the in-flight phase. 

 

Key words:  Accelerometry, Atmospheric Instrument, Planetary Entry Probes. 
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1.   Introduction 

Accelerometers have been included in payloads since the early days of Earth re-entry 

modules [Seiff, 1963., Peterson, 1965a.]; therefore, it is of little wonder that all planetary probes 

continue to have some form of accelerometry payloads. Their popularity stems from their wide-

ranging applications: from triggering critical spacecraft events during entry and descent, to 

inferring various planetary properties. The Huygens mission to Titan [Lebreton et al., 2005] 

consisted of a probe equipped with various science instruments to study Titan and its atmosphere 

[Lebreton and Matson, 2002], and broadly two groups of accelerometers. The first group, the 

system accelerometers, consisted of the Radial Acceleration Sensor Unit (RASU) and the Central 

Acceleration Sensor Unit (CASU), whose main tasks were to measure the spin rate during the 

probe’s descent and to trigger key mission sequence events, respectively [Jones and Giovagnoli, 

1997, Clausen et al., 2002]. The second group, the science accelerometers, were distributed 

between two of Huygens’ six scientific instruments: the Huygens Atmospheric Structure 

Instrument (HASI) and the Surface Science Package (SSP). This paper focuses on a highly 

sensitive accelerometer, henceforth referred to as ‘the Servo’, which was included as a sub-

system in the HASI instrument suite and whose main task was to infer Titan’s upper atmosphere 

density profile. 

There are several references describing the HASI instrument in its entirety [Fulchignoni et 

al., 1997., Fulchignoni et al., 2002.] ; in summary, the accelerometer sub-system consisted of 

three orthogonally mounted piezo-resistive (PZR) accelerometers and the Servo, mounted along 

the probe’s descent axis to measure acceleration (or more accurately, deceleration). The aim of 

the PZR was to detect the impact at landing, hence its operating range was 0 to 2000 g (where g = 

Earth’s surface gravity, 9.8 m/s2), giving a rather coarse accuracy of +/- 0.4 g [Fulchignoni et al., 

2002.]. The primary aim of the Servo was to determine Titan’s atmospheric density profile during 

the probe’s high-speed entry (i.e. supersonic and above) phase. The pressure and temperature 
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 5
profiles can be inferred from the density profile and by using equations of hydrostatic equilibrium 

and state respectively (see outputs in Fig. 13). Fig. 1 shows the location of the accelerometer sub-

system unit (containing the Servo) on the Huygens probe. 

<Insert Fig. 1 and caption 1> 

 

2.  Building Blocks of the Servo Unit 

2.1.  The sensor. 

The main component of the Servo unit was its highly sensitive Q-Flex accelerometer shown in 

Fig. 2, which was at the time (~ 1992) procured from Sundstrand, and is now be available 

through Honeywell Inc (more details from http://www.inertialsensor.com). The sensor works on 

the principle of ‘servo electronics’1, where the current required to return a small proof mass to its 

null position, along a single axis, is proportional to the input acceleration.   

  

<<Insert Fig. 2 and caption. 2 here. (Figure 2 is presently supplied as one figure, but 

available separately as Fig. 2a, Fig. 2b, and Fig. 2c if the combined figure needs to be rearranged 

for publication) > 

 

 

2.2.  Signal conditioning electronics. 

                                                 
1  The Electronics Handbook, 1996 quotes: “A servo system is defined as a combination of elements for 
the control of a source of power in which the output of the system, or some function of the output, is fed 
back for comparison with the input and the difference between these quantities is used in controlling the 
power [James, Nichols, and Phillips, 1947.]”. 
 



Acc
ep

ted
 m

an
usc

rip
t 

 

 

 

 

 

 

 

 

 

 6
The signal conditioning circuitry, shown in Fig.3, was kept to a minimum in order to reduce 

the chances of component failures during their 7-year long exposure to the space environment 

(i.e. radiation and vacuum) during cruise. The total resistance across the Servo’s output, from a 

combination of two load resistors, determines its measurement range (either +/- 20 mg (or milli-

g) or +/- 18.5 g). The output voltage, taken across a load resistor combination, is made available 

as two channels: unamplified (unit gain) and x10 amplified. Hence the total number of Servo 

measurement ranges available, following amplification and +/-10V A/D (12-bit ) conversion, are: 

(1) +/-2  mg, (2) +/- 20 mg , (3) +/- 1.85 g, and (4) +/- 18.5 g  [Zarnecki et al., 2004.]. 

 

< Insert Fig. 3 and caption. 3.> 

 

2.3. Software. 

The on-board Servo software had two functions: (1) to select the Servo’s measurement 

range (by switching between load resistors), dependent on the magnitude of deceleration 

experienced by the probe, and (2) to reduce and package data for telemetry down-link, according 

to available bandwidth during different phases of the mission. The software functions are 

summarised in Fig. 4: while the ‘Resolution’ setting is time-driven, the software is able to switch 

back at any time, if the output drops to 10% (or increases to 90%) of the full scale.  

 

< Insert Fig. 4 and caption. 4.> 
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 7
2.4. Lessons learned. 

The above implementation of four measurement ranges and the associated software is a well 

rehearsed route; albeit in some varying form, this method has been implemented on the two 

Vikings [NASA-TN-3770218, 1976.], Pathfinder [Seiff, A., et al., 1997., Magalhães, J.A., 1999], 

and Galileo [Seiff, A., and Knight, T.C.D., 1992.]  probes. Given such a strong and successful 

heritage, and now with the addition of the Huygens probe, the overall design philosophy is hard 

to fault. Except, in this particular implementation the in-flight test capability of the Servo’s scale 

factor ( ‘sf‘ in Eq. 2), a measure of the Servo’s ‘acceleration sensing’ capability, was omitted. 

There is an option available on the Servo to stimulate the sensor, by allowing a known current to 

pass through the sensor’s inputs, and measure the resulting output (See Fig. 2 ‘current self test’ 

pin 2 on the schematic, [Q-Flex Accelerometer Handbook, 1997., and Cardy, 1984.]). If this self-

test had been implemented, then any deviation in Servo’s scale factor from its pre-launch value 

would have been better characterised, leading to a more accurate determination of the 

deceleration magnitudes at Titan. The most likely reason for not implementing the scale factor 

self-test/calibration may have been to retain simplicity in the circuit design, thereby reducing the 

probability of failures. 

 

 

3.  Assembly, Integration, and Pre-launch Tests. 

3.1. Location on the probe. 
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Since one of the goals of the Servo was to detect Titan’s atmosphere by measuring the 

aerodynamic deceleration along the probe’s descent axis, it was desirable to keep contributions 

from other motions (such as spin) to a minimum. The Servo unit was therefore mounted as close 

as possible to the probe’s centre of mass (CM).  The details of the Servo’s mounting position 

relative to the CM can be found in [Colombatti, et al., 2008b.]. It is important to note that during 

the entry and descent phases, the probe’s CM position changes as the probe’s entry modules and 

parachute are ejected. During entry, the front shield suffers ablation and the heat resistant blanket 

(covering the shield) burns off. The modelled change in the probe’s overall mass as a function of 

time is shown in Fig. 5.  

< Insert Fig. 5 and caption. 5.> 

The (non-aerodynamic) acceleration term, aw, arising from the CM-Servo position offset (in Eq. 

1)  [Cancro et al., 1998.], needs to be removed from the measured acceleration before calculating 

the density profile.  aw is a function of the distance between probe’s CM and the Servo, r, the 

angular rate of the probe, w, and the angular acceleration of the probe, α.  

.),,:.(
]1.[)(

vectorsareandrwatermsAllNote
Eqrrwwa

w

w

α
α ×+××=

 

3.2. Ground tests. 

The testing philosophy on the Huygens mission was to run a standard, time-line driven, 

mission execution sequence following integration of each instrument on the probe platform. The 

post instrument-probe integration testing was extensive, covering various environmental (thermal 

vacuum, electromagnetic compatibility and vibration) tests. Additionally, a test was carried out to 

characterise the alignment of Servo-to-probe axes. The test involved rotating the probe on a 

frame in 1-degree steps and recording Servo outputs at each step.  

3.3. Lessons learned. 
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 9
The test programme, with the usual European Space Agency’s reviews, was comprehensive 

- no further tests need to be added by future instruments. 

If the mass, power and data budgets allow, then a better option would be to consider having 

two sets of 3-axis Servo sensors, mounted 180 degrees apart on the probe’s platform along the 

axis in which the probe’s CM is projected to change the most. This arrangement gives 6 degrees 

of freedom, allowing a better determination of the probe’s nutation / coning motion. 

Another important lesson is to get an arrangement in place, as early as possible, between 

the prime contractor and the project management to characterise the drag coefficient as a function 

of various aerodynamic parameters. The uncertainty in drag coefficient constitutes a major source 

of error in constructing atmospheric profiles [Peterson, 1965a. ]. In simulating extreme cases of 

the Huygens descent, [Kazeminejad et al., 2004.] used +/- 5 % error around the drag coefficient 

data set. Fig. 6 shows the drag coefficient values used for Huygens analysis after using the 

available aerodynamic database and a few iterations [Kazeminejad et al., 2007.]. 

< Insert Fig. 6 and caption. 6.> 

 

 

4.  Post-launch (Cruise) Checkouts: Data Analysis. 
 

One of the objectives of the post-launch (also known as ‘in-flight’ or ‘cruise’) checkout campaign 

was to check the functionality of all instruments aboard the Huygens probe. A total of 16 in-flight 

checkouts, F1 to F16, were carried out during the cruise phase. The checkouts: starting from 8 

days after launch (F1), were roughly spaced at six-monthly intervals until the Titan encounter 
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(F16). The Servo data from the freefall, zero-g, state, as provided by the cruise environment 

proved a valuable source in understanding the Servo and the noise present in this particular 

circuit configuration. 

To convert acceleration measurements from raw units (in Volts) to units of acceleration (in m.s-2), 

the following relationship is used: 

.'').(':

.,:

]2.[).(
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2

2
2
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Eq. 2 shows the linear relationship (of the form: y = m.x +c) between raw acceleration, a(V), and 

converted acceleration, a(m.s-2). The offset is close to zero; its exact value depends on the Servo’s 

input current (as set by resistor RL in Fig. 2) and the operating temperature.  The scale factor 

determines the Servo’s sensitivity in terms of Amps / g (or Amps / m.s-2); it is specific to a sensor 

and also varies with the operating temperature. Appendix A gives manufacturer’s calibration of 

these two parameters for the specific Servo sensor flown on Huygens. The succeeding analysis 

outlines the observations made from the analysis of the Servo’s output, in terms of noise / drifts 

and its implications on the offset values. 

4.1. Cruise checkout (raw) data. 

During each checkout, the Servo operated on a descent timeline simulating Huygens entry 

into Titan’s atmosphere. Therefore, the data consists of same sequence: approximately 15 

minutes of high resolution, pre-entry data, where thin atmosphere needs to be detected, followed 

by two hours of low resolution data. Fig. 7 shows a typical cruise data set; this is from the final 
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 11
checkout, F16, carried out approximately one month before Huygens-Cassini separation on 25th 

December 2004. 

<Fig 7. data from last checkout F16.> 

4.2. Noise measurements from cruise-checkout data. 

While it is not possible to monitor changes in the scale factor (sf in Eq. 2) from manufacturer’s 

calibration, the cruise conditions are ideal for tracking drifts in the offset. Fig. 7(A) shows a trend 

in the zero-g offset that appears to rise over time; this is due to thermal drift within the Servo. 

Superimposed with the thermal drift is an oscillating signal, whose standard deviation (the 1-

sigma scatter) may be obtained after removing the drift: i.e. by subtracting a 7-point median value 

from the original signal, or with respect to a 3rd order polynomial fit as described in [Zarnecki et 

al., 2004.]. The 1-sigma noise values associated with the oscillations from each of the cruise 

checkouts, F1 to F12, were presented in [Zarnecki et al., 2004.]; an update is given here in Table 

1. 

 
< insert Table 1 here> 

 

From Table 1, we notice that the 1-sigma noise for checkouts F6 and F7 are significantly higher 

at 1.4 μg, than the typical 0.3 μg level seen in most other checkouts. In order to see if there is any 

periodicity present in the higher noise data, we compare frequency spectra from F6 and F7 with a 

‘typical’ data set F16.  The dominant frequency components are obtained by first removing the 

drift (i.e. by subtracting a 7-point median value from the original signal), followed by running a 

Fourier Transform. Fig. 8 shows the steps involved in processing data from the last checkout, 

F16, and its noise frequency spectrum. 

<Fig. 8. Fourier analysis of F16 data.> 
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 12
Running Fourier transforms on the two data sets (see Fig. 9) show some dominant frequency 

components around the 0.4 Hz region (and its multiples) in F6, while the F7 shows a strong 

presence of oscillations at 1Hz (in intensity terms, the 1Hz component is greater than the 

temperature trend that appears around the 0Hz region). These two checkouts were on either side 

of the Cassini-Huygens spacecraft’s closest flyby past Jupiter (30th December 2000). There was 

also a problem, occurring around the same time as the closest flyby, with one of the four reaction 

wheels experiencing more friction. Since only three reaction wheels are required to control the 

spacecraft’s attitude, the reaction wheel with friction problem was made redundant. During the 

interim period, the spacecraft was controlled by its ‘ hydrazine thruster attitude control system’ as 

reported in [Hansen et al, 2004.]. Further conclusions from the Servo observations presented in 

Fig. 9 are only possible if the spacecraft’s navigation data were to be correlated with the Servo 

data – a task still outstanding at the time of writing this article. 

<Fig 9. Fourier analysis of F6 & F7 data.> 

The high-resolution data (up to +/- 2 mg) plotted over several checkouts, show movement in the 

zero-g offset over the duration of the Cassini-Huygens cruise phase (from 1997 to 2004) as 

shown in Fig. 10.  Since the offset values are in m.s-2 (see Eq. 2), any discrepancy between the 

perceived  and the actual offset values (see Appendix A: ‘offset values’), may translate into a 

systematic error on acceleration measurements. Hence, the error due to offset may be particularly 

significant for small-magnitude acceleration measurements. 

<Fig. 10. offset movements over time.> 

 

If we convert the raw data in Fig. 7 to acceleration (in m.s-2) using values in Appendix A, we see 

a step-change in the cruise offset values (see  Fig. 11) when the Servo switches from the highest 

resolution (measuring +/- 2 mg) to a coarser resolution (+/- 1.85 g)  . Clearly the cruise 
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environment must yield a constant acceleration (around 0 m.s-2 given that the spacecraft is in a 

‘freefall’ state), so this anomaly in converting data needs to be explained. On examination of Eq. 

2 (or Eq. A1 from Appendix A) and the circuit in Fig. 2,  it becomes clear that the current method 

of handling the offset does not take into account the effect of Servo’s feedback load resistance on 

the offset. The offset is a function of: (1) Servo’s acceleration measurement range (as set by load 

resistor RL in Fig. 2, and (2) the drifts due to temperature and ageing effects (as seen in Fig. 10).  

 

<Fig 11. a step change in ‘zero-g’ offset.> 

 

For the two most widely tested scenarios in cruise checkouts, namely the high-resolution entry 

(which delivers Servo data through the ‘high-Gain , high-Resolution’ load, as set out in Table. 

A1, in Appendix 1) and the low-resolution (+/- 1.85 g) descent data, an alternative form of 

equation Eq. 2 may be used. This alternative form (i.e. Eq. 3) uses the offset measurements 

(offset(V) ) from a preceding checkout to subtract an appropriate level of offset for a particular 

resolution setting, as well correct any offsets drifts that may have occurred in the cruise phase.  
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4.3. Lessons learned. 

The cruise phase presents an important opportunity to verify accelerometry data in its various 

modes in a stable, zero-g, environment.  This opportunity must be well exploited: for example, 
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development of telecommands to allow the Servo to step through its all four measurement modes 

would have yielded useful information in terms of noise and better characterisation of the offset 

in each mode. Sensitive accelerometry measurements may also be useful in understanding any 

navigational / mission-related data. For example, the extra periodicity observed in Fig. 9 might 

have been useful in correlating any anomalous observations, although none has come to our 

attention in this instance.  

An extremely useful feature would be to plan for and include controlled spacecraft rotations and a 

step-change to the rotation rate during the time the accelerometer is ‘on’ in the cruise phase. 

While this might prove an undesirable addition from the navigation and space operations 

perspective, the output from such measurements will help verify calibration (of the scale factor) 

in-flight as well as monitor any changes in the sensitivity of the device. 

 

5.  Titan: Entry, Descent and Landing (EDL) - data 
analysis. 

5.1. Early  pre-entry / entry data. 

After its release from the Cassini orbiter on 25th December 2004, the Huygens probe coasted 

and encountered Titan’s upper atmosphere on 14th January 2005 at an altitude of ~1,500km 

[Fulchignoni, et al., 2005.]. Along with the various probe parameters [Colombatti, et al., 2008a.], 

it is possible to estimate probe’s spin rate at encounter from the most dominant frequency 

component  (obtained by Fourier Transform; see Fig. 12) from pre-encounter (or ‘pre-entry’) 

Servo data. 

 

<Fig 12. pre-entry Titan data.> 
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If the Servo was perfectly aligned with the probe’s CM, then using the same technique as 

above (i.e. Fourier Transform of early entry data) might yield information on atmospheric (or 

gravitational tidal) waves [Salby, 1996.]. Under appropriate conditions: i.e. (1) the probe must be 

spin-stabilised, (2) the Servo (or any other highly-sensitive accelerometer) can only sense 

decelerations in the descent-axis, and (3) group velocity of gravitational waves must be much 

smaller than probe’s entry velocity (<100 cm.s-1 in Titan’s case, [Strobel, 2006]) versus  entry 

velocity of ~ 6 km.s-1 [Atkinson, et al., 2005.]), the chances of detecting such a tidal wave must 

improve. 

 

5.2. Titan’s atmospheric structure. 

The outputs of the Servo during the entry phase: Titan’s upper atmosphere density, pressure 

and temperature profiles as a function of altitude (from 1500 to 160 km) have been presented in 

[Fulchignoni, et al., 2005] and are reproduced in Fig.13. The density, ρ, in Eq. 4 is calculated 

from the probe’s acceleration, a, its velocity relative to atmosphere, v (obtained by integrating a 

using the initial entry conditions), and the knowledge of probe’s ballistic coefficient, m/CD.A 

(where: m = probe’s mass, CD = drag coefficient, and A = probe’s cross-sectional area).  

]4.[
...

..2
2 Eq

vAC
am

D

=ρ  

The pressure profile, P, is obtained by integrating the hydrostatic equilibrium: dP = - 

ρ.g.dz, where, ρ = density , g = local gravity, and z = altitude. Finally the temperature profile, T, 

is obtained from the ideal gas equation: T = (P.Mm)/(ρ.kB) , where, Mm = mean molecular mass, 

and kB = Boltzmann’s constant. 

The techniques used for determining the atmospheric profiles are described in more detail in 

[Kazeminejad, et al., 2007, Withers, et al., 2003., Withers, et al., 2004.]. In general, the error on 
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the profiles (in Fig. 13) is approximately 10%; mainly originating from the poor (time-correlated) 

knowledge of the angle of attack and velocity measurements that feed into the (estimated) 

probe’s aerodynamic drag coefficient. 

<Fig 13. density / temp curves from HASI Nature paper.> 

 

5.3. Descent under [stabiliser drogue] parachute. 

The Huygens parachute system consisted of two parachutes, a larger parachute (8.3 m 

diameter), known as the main parachute, was deployed for the first 15 minutes of the descent. 

The rest of the descent was on a smaller (3 m diameter), stabiliser drogue parachute. In this 

configuration, the probe was suspended by three bridle lines and a swivel mechanism to allow the 

probe to rotate (as shown in Fig. 14) .Under the drogue parachute, there are two swing modes; a 

slower, ‘rigid-pendulum’ swing mode and a faster, ‘half-scissors’ swing mode.  Parachute model 

during the descent phase gives oscillation frequency due to the faster swing mode at ~ 0.8 Hz, 

while the slower mode, with length of 12 m, at  0.05 Hz (i.e. period = 20 seconds.) [Karkoschka, 

et al., 2007.]. 

  

<Fig. 14. Huygens schematic under parachute and parachute model.> 

The two plots in Fig. 15 (A and B) show the frequency components seen by the Servo; it is 

clear that the latter part of descent, from 62 to 48 km, only sees oscillations at 0.35 Hz: i.e. the 

‘half-scissors’ model, predicting 0.8 Hz swings, is not valid in this region. The early part of the 

descent, from 86 to 62km, sees oscillations on either side of the predicted 0.8 Hz , as well as (an 

equally dominant component) at 0.55 Hz.  

<Fig 15(A) and Fig 15(B)  . frequency components under parachute.> 
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5.4. Post-landing analysis. 

The Servo measurements were not telemetered between 1 km and landing in order to 

allocate maximum bandwidth to the 3-axes PZR accelerometers to detect the landing event. In 

post-landing configuration, the Servo measurements are shown in Fig. 16, where the bottom line 

(labeled ‘Original’) gives acceleration according to manufacturer’s calibration (calculated using 

the values in Appendix A ), and the top line (labeled ‘Revised’) gives the revised acceleration 

that is approximately 1% higher than in A. The ‘Revised’ acceleration values are calculated using 

Eq. 3, taking into account the zero-g offset seen during the cruise phase (in Fig. 7(B) and Fig. 11, 

of approximately -0.010 V (or -0.015 m.s-2 ) ). An independent study by NASA Langley [NESC, 

2007.] also found the need for 1% upward revision in the Servo’s acceleration measurements 

during their analysis. 

<Fig 16. Servo’s measurements post-landing..> 

 

5.5.  Lessons learned. 

 Aside from its science goals (i.e. determining atmospheric profiles), the accelerometry data 

from the mission phase can be useful in correlating other dynamic/engineering events such as 

buffeting and parachute behavior. In summary, the data can be a useful reference for many years 

after the mission. 

6.  Summary 

The individual sections of this article address various development and data analysis phases 

that were encountered during the Huygens mission and should be applicable to other planetary 
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missions involving an entry probe or a lander element. We hope this review article will serve as a 

useful reference for future accelerometry payloads and in planning for its data exploitation.  

Since the Huygens mission was launched, there have been a number of missions to Mars; 

Beagle 2, Mars Exploration Rovers, Phoenix, and the Mars Science Laboratory (to be launched in 

September/October 2011) - all of which have/had accelerometry payloads. The challenges for 

larger future missions (leading possibly to a manned mission) to Mars are outlined in [Braun and 

Manning, 2006]. The accelerometry data, along with the fast-growing ground tracking capability 

[Jones, 2004.] will have a role to play on future missions, in the areas of EDL and atmospheric 

profiling. However, a common, ‘off-the-shelf’, accelerometry package for future missions 

remains elusive due to the large variations in the entry modules’ requirements (especially in 

terms of mass, power, and size budgets allocated to accelerometry packages).  

 

Appendix A: converting Servo data to acceleration (in 
m.s-2) from manufacturer’s data. 

 The equation for converting measurements from raw units (in V) to acceleration (in m.s-2)  was 
given in Eq. 2 and can be re-written as: 

]1.[)(
)/()(

)().( 2 AEqggoffset
gAsfR

Vasma ×⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

Ω
=

•
−  

 
The manufacturer’s calibration data (dated: January1993) provides variation in the scale factor ( 
sf(A/g) ) and the offset ( offset(g) ) as a function of temperature. From 17(A) and 17(B), the 
polynomial fits define the two parameters. 
 
 
<Fig 17(A) and 17(B): plots of Servo’s manufacturer’s calibration > 
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Tables 

Table 1: 1-sigma noise values from checkouts - F1 to F16. 
 
Cruise 
Checkout 
No. 

Noise (1.σ ) 
      
   [V]           [µg] 

Temperature 
Range.  
(K) 

Duration 
 
(minutes) 

Date Heliocentric 
Distance  
[AU] 

F1 0.0014 0.3 288.3 / 291.8 14.9 23/10/1997 1.0 
F2 0.0015 0.3 287.6 / 289.6 8.0 27/03/1998 0.7 
F3 0.0015 0.3 284.7 / 288.2 15.0 27/12/1998 1.6 
F4 0.0016 0.3 285.8 / 289.0 13.7 15/09/1999 1.3 
F5 0.0015 0.3 283.8 / 287.3 15.0 03/02/2000 2.9 
F6 0.0070 1.4 285.1 / 288.3 13.7 28/07/2000 4.1 
F7 0.0071 1.4 286.1 / 289.5 14.9 22/03/2001 5.5 
F8 0.0016 0.3 284.4 / 287.6 13.7 20/09/2001 6.4 
F9 0.0016 0.3 282.1 / 285.6 14.9 17/04/2002 7.2 
F10 0.0016 0.3 281.6 / 284.9 13.7 16/09/2002 7.7 
F11 0.0013 # 1 0.2 283.7 / 285.8 14.0 30/04/2003 8.2 
F12 0.0016 0.3 281.1 / 284.2 12.8 18/09/2003 8.6 
F13 0.0037 # 2 0.7 289.4 / 290.4 5.8 20/03/2004 8.9 
F14 0.0016 0.3 283.5 / 287.1 14.2 14/07/2004 9.0 
F15 0.0016 0.3 282.0 / 285.0 12.8 14/09/2004 9.0 
F16 0.0016 0.3 281.8 / 284.9 12.8 23/11/2004 9.0 
#1: F11 had missing telemetry that probably lead to a slight under-estimation of the noise. 
#2: F13 had instrument-specific telecommanding activities, leading to a shorter test duration and 
higher-than-average noise. 
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Figures and captions 

Caption 1.  
 
Shows the central location of the accelerometer sub-system unit, containing the Servo, from the 

technical drawing perspective (A), the computer-aided-design CAD (B), and the photograph (C). 

The HASI Servo is located as close to the Huygens probe’s centre of mass (CM) as possible; its 

location relative to the CM, in the probe’s reference frame [X, Y, Z], is [-6.00, 14.65, 1.42] mm 

[Colombatti, et al., 2008b.]. 

 
 Fig. 1.   
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Caption 2. 

 The Servo sensor (QA2000, Q-Flex accelerometer), along with its main properties. The 

right hand section of the image shows the schematic representation of the Servo unit. The voltage 

across resistor RL gives a measure of the acceleration; RL also determines the device’s sensitivity 

in terms of Volts per unit acceleration (V/g). The device has an inbuilt temperature sensor. 

 

 

Fig. 2. 
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Caption 3. 

The front-end signal conditioning electronics for the Servo unit. The output from the Servo 

‘sees’ one of the two load resistors, depending on the bit set by the HASI  Data Processing Unit 

(DPU).  Either, the load resistance is set to 509 Ω (i.e. the low resolution, +/- 18 g scale), or 391.5 

kΩ (the high resolution, +/- 0.02 g (or 20 mg) scale). The output is made available at two gain 

levels: x10 gain (pin 8 on the right hand side) and x1 gain (pin 21). Both output channels (i.e. 

pins 8 and 21) are sampled (individually) at 400 Hz by a 12-bit ADC whose full-scale range is +/-

10 V.  

Fig. 3. 
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Caption 4. 

The main functions of the Servo’s on-board software. Notes:- (1) The T0 time/event 

indicates the start of the descent sequence [Lebreton, et al., 2005.] and occurs when the probe’s 

housekeeping accelerometer detects the atmosphere. (2) The decision points (B), (C) and (D) also 

have a backup timeout value. (3)  Data are reduced by taking every fourth value from the data 

buffer (i.e. 100 Hz), followed by summing and averaging variable number of samples depending 

on the mission phase (e.g. 32 samples in Entry phase results in 3.125 Hz effective sample rate). 

event. 

Fig. 4. 
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Caption 5. 

Huygens mass evolution during entry was modelled by [Gaborit, 2004] and used in 

reconstructing the atmospheric profiles as described in [Kazeminejad et al., 2007. and 

Colombatti, et al., 2008a.]. The probe’s centre of gravity (CoG) position, in the [X,Y,Z] frame, at 

the start and end of the entry phase is quoted in [Lebleu, et al., 2005.] as: [75.44, 1.75, 5.38] mm 

and [82.54, 2.48, 5.13]mm respectively. The CoG position, together with the initial CM offset 

(quoted under  Fig. 1), may be used to work out the end of entry phase CM offset. 

 

 

 

Fig. 5. 
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Caption 6. 

Variations in the drag coefficient values as a function of altitude were ‘iteratively refined’ 

as described in [Kazeminejad et al., 2007.]. In summary, the drag coefficient values are initially 

chosen by interpolating the Huygens aerodynamic database and used to calculate the atmospheric 

profiles, particularly the density (ρ) and the temperature (T) profiles. The ρ, T, and , and velocity 

profiles are used to improve the estimates of Mach and Knudsen numbers, which in turn are used 

to improve the drag coefficient. A similar method (of iteratively refining the drag coefficient) was 

used in analysing accelerometry results from Mars Pathfinder [Magalhães et al., 1999.] 

Fig. 6. 
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Caption 7. 

Typical Servo (raw) data from cruise checkouts; this data set is from the final (F16) 

checkout and is essentially a measure of the zero-g acceleration offset. Although the HASI Servo 

had 4 measurement ranges: (1) +/-2 mg (milli-g) , (2) +/-20 mg , (3) +/-1.85 g, and (4) +/-18.5 g, 

the data were mainly available from only two ranges, due to the steady, zero-g acceleration plus 

some (random and thermal) noise.  Fig. 7(A) shows the high-resolution, 15-minute, raw data 

(from the +/-2 mg range); Fig 7 (B) shows the low-resolution data (from the +/-1.85 g range).  

 

 

 

Fig. 7. 
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Caption 8. 

Fourier analysis of the high-resolution data from F16. (A): raw Servo data (same as Fig. 7(A)). 

(B): flattened (or median filtered) data; after subtracting a 7-point moving median average from 

data in (A). (C) and (D) are frequency spectra of raw and median filtered data respectively. The 

horizontal line in (C) and (D) gives the ‘mean + 3.σ’ threshold; frequency components above the 

threshold line are referred in the text as ‘dominant components’. While the temperature trend 

appearing in the raw spectrum in (C) around 0 Hz masks other components, the filtered data in 

(D) show some components above the threshold.  

 

Fig. 8. 
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Caption 9. 

Fourier analysis of F6 and F7 data.  The top four plots represent the F7 checkout, while the 

bottom four plots relate to the F6 checkout. The F6 data shows dominant frequencies around 

0.38Hz and 0.85 Hz; F7 has dominant components at around 1 Hz (i.e. 0.96 and 1.04 Hz) and 

1.37 Hz . Both spectra contain dominant frequency components not seen in a typical checkout, 

such as F16 data in Fig. 8.  Without further spacecraft dynamics information, it is difficult to 

attribute the periodicity seen by the Servo in these particular checkouts. However, both of these 

checkouts coincide with the timeframe during which one of the spacecraft’s reaction wheels was 

developing greater friction (and was later taken out of action). The checkouts also fall on either 

side of the closest Jupiter flyby (see text for dates). 

Fig. 9. 
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Caption 10. 

 Variation in the offsets from the high resolution (up to +/-2 mg or ~ +/- 0.02 m.s-2 ) data 

from all cruise checkouts. These raw values must equate, on average, to zero acceleration. Hence, 

the cruise measurements are useful in obtaining the zero-g offset values (used in Eq. 2). We see a 

small drift the Servo’s offset ‘upwards’ on the plot over time (i.e. moving to less negative 

values).  

Fig. 10. 
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Caption 11. 

When converted using the information from Appendix A, the high-resolution entry and the 

low-resolution descent data do not ‘line-up’ as they should given the constant (0 g) acceleration. 

This step in the two data sets from the same cruise checkout demonstrates the need to adjust the 

Servo’s offset according to its measurement range as well as its operating time and temperature.  

 

Fig. 11. 
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Caption 12. 

Servo data prior to the atmosphere encounter and its frequency spectrum. The top-left 

figure shows atmosphere detection at the tail end of the plot. The dominant frequency component 

(at 0.086 Hz), along with other probe dynamics-related information, has been used to calculate 

the spin rate of  ~ 7 rpm [Colombatti, et al., 2008a.]. 

 

 

Fig. 12. 
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Caption 13. 

 Titan’s upper atmosphere density (left), pressure and temperature (right) profiles were the 

main outputs of the Servo. These results were presented in [Fulchignoni, et al., 2005.]; all data 

above 150 km have been derived from the Servo’s measurements of the Titan’s atmosphere. An 

alternative method, described in [Aboudan, et al., 2008.], uses ‘extended Kalman filter’ technique 

to derive results below. 

Fig. 13. 
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Caption 14. 

Schematic of the Huygens probe under stabiliser chute (left), and the parachute model 

(right). Oscillations due to the faster ‘half-scissors’ swing mode should be around 0.8 Hz, while 

the slower ‘rigid-pendulum’ mode, with length of 12 m should be around 0.05 Hz (i.e. period = 

20 seconds.) . The parachute calculations and details are available in Underwood et al. (2005). 

 

Fig. 14. 
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Caption 15. 

Frequency spectra from the probe’s descent under the drogue parachute .While the descent 

from 86 to 62 km (Fig. 15(A)) show dominant frequency components around the modelled 

oscillation frequency of 0.8Hz (in Fig. 14), the latter part of the descent: from 62 to 48 km (Fig. 

15(B)), shows no evidence of the modelled frequency.    

 

Fig. 15 (A). 
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Fig. 15 (B). 
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Caption 16. 

Post-landing acceleration measurements (on Titan’s surface) show the revised values to be 

higher by about 1% than original values. The revised value, calculated by taking the offset drift 

during cruise into account,  is closer to the Titan’s reference gravity of 1.345 m.s-2, quoted in 

[Lebreton, and Matson, 2002.]. 

 

 

Fig. 16. 
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Caption 17. 

Fig.17(A): Servo’s scale factor as a function of temperature from manufacturer’s calibration of 

the specific flight sensor. Changes to these values over time have not been monitored.  

Fig.17(B): Servo’s offset as a function of temperature from manufacturer’s calibration of the 

specific flight sensor. These values can be monitored during cruise/ in-flight checkouts. 
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Fig. 17 (A). 

 

Fig. 17 (B). 

 


