138 research outputs found

    Biocrusts Indicators of Livestock Grazing Effects on Soil Stability in Sagebrush Steppe: A Case Study from a Long-Term Experiment in the Northern Great Basin

    Get PDF
    Biocrusts are sensitive to changes in livestock grazing intensity in arid rangelands and may be useful indicators of ecosystem functions, particularly soil properties like soil stability, which may suggest the potential for soil erosion. We compared biocrust community composition and surface soil stability in a big sagebrush (Artemisia tridentata) steppe rangeland in the northwestern Great Basin in several paired sites, with or without long-term cattle grazing exclusion, and similar soils (mostly sandy loams), climate, and vegetation composition. We found that livestock grazing was associated with both lower surface soil stability and cover of several biocrust morphogroups, especially lichens, compared with sites with long-term livestock exclusion. Surface soil stability did not modify the effects of grazing on most biocrust components via interactive effects. Livestock grazing effects on total biocrust cover were partially mediated by changes in surface soil stability. Though lichens were more sensitive to grazing disturbance, our results suggest that moss (mostly Tortula ruralis in this site) might be a more readily observable indicator of grazing-related soil stability change in this area due to their relatively higher abundance compared with lichens (moss: mean, 8.5% cover, maximum, 96.1%, lichens: mean, 1.0% cover, maximum, 14.1%). These results highlight the potential for biocrust components as sensitive indicators of change in soil-related ecosystem functions in sagebrush steppe rangelands. However, further research is needed to identify relevant indicator groups across the wide range of biocrust community composition associated with site environmental characteristics, variable grazing systems, other rangeland health metrics, and other disturbance types such as wildfire

    Long-Term Outcomes of External Dacryocystorhinostomy in the Age of Transcanalicular Microendoscopic Techniques

    Get PDF
    Purpose. This study aimed to evaluate long-term results of external dacryocystorhinostomy (DCR) at a tertiary eye care center specializing in lacrimal duct surgery in Germany. Methods. The medical records of 1010 patients with acquired nasolacrimal duct obstruction (NLDO), who had undergone lacrimal duct surgery at a tertiary eye care center, were reviewed. Only adult patients who had undergone external DCR were included. The evaluation included the following parameters: age, gender, duration of symptoms, patient satisfaction, previous dacryocystitis, complication rates, and surgical outcome. Results. 154 eyes of 146 patients (14.5%) could be included in the study. The average age was 64.1±29.7 years. 66.4% of patients were females and 33.6% were males. Acute or chronic dacryocystitis was found in 81 patients (55.5%). Overall, 82.8% of patients had full resolution of symptoms. The success rate of external DCR for patients with previous episodes of dacryocystitis was 82.7% compared to 83.4% for patients without dacryocystitis in their medical history. Conclusion. In cases in which transcanalicular microendoscopic techniques are contraindicated (e.g., after dacryocystitis) or in complex cases where microendoscopic procedures have failed (revision surgery), external DCR is still the surgical treatment of choice with very good postoperative success

    Nutrient Cycling in Tropical and Temperate Coastal Waters: Is Latitude Making a Difference?

    Get PDF
    Tropical coastal waters are highly dynamic and amongst the most biogeochemically active zones in the ocean. This review compares nitrogen (N) and phosphorus (P) cycles in temperate and tropical coastal waters. We review the literature to identify major similarities and differences between these two regions, specifically with regards to the impact of environmental factors (temperature, sunlight), riverine inputs, groundwater, lateral fluxes, atmospheric deposition, nitrogen fixation, organic nutrient cycling, primary production, respiration, sedimentary burial, denitrification and anammox. Overall, there are some similarities but also key differences in nutrient cycling, with differences relating mainly to temperature, sunlight, and precipitation amounts and patterns. We conclude that due to the differences in biogeochemical processes, we cannot directly apply cause and effect relationships and models from temperate systems in tropical coastal waters. Our review also highlights the considerable gaps in knowledge of the biogeochemical processes of tropical coastal waters compared with temperate systems. Given the ecological and societal importance of tropical coastal waters, we hope that highlighting the differences and similarities to temperate systems as well as the existing gaps, will inspire further studies on their biogeochemical processes. Such knowledge will be essential to better understand and forecast impacts on tropical coastal nutrient cycling at local, regional, and global scales

    Aquatic Ecosystems are the Largest Source of Methane on Earth

    Full text link
    Methane concentrations in the atmosphere have almost tripled since the industrial revolution, contributing 16% of the additional radiative forcing by anthropogenic greenhouse gas emissions. Aquatic ecosystems are an important but poorly constrained source of methane (CH4) to the atmosphere. Here, we present the first global methane emission assessment from all major natural, impacted and human-made aquatic ecosystems including streams and rivers, freshwater lakes and reservoirs, aquaculture ponds, estuaries, coastal vegetated wetlands (mangroves, salt-marshes, seagrasses), tidal flats, continental shelves and the open ocean, in comparison to recent estimates from natural wetlands and rice paddies. We find that aquatic systems are the largest source of methane globally with contributions from small lakes and coastal ocean ecosystems higher than previously estimated. We suggest that increased biogenic methane from aquatic ecosystems due to a combined effect of climate-feedbacks and human disturbance, may contribute more than expected to rising methane concentrations in the atmosphere

    Biodegradable collagen matrix implant vs mitomycin-C as an adjuvant in trabeculectomy: a 24-month, randomized clinical trial

    Get PDF
    AIM: To verify the safety and efficacy of Ologen (OLO) implant as adjuvant compared with low-dosage mitomycin-C (MMC) in trabeculectomy. METHODS: This was a prospective randomized clinical trial with a 24-month follow-up. Forty glaucoma patients (40 eyes) were assigned to trabeculectomy with MMC or OLO. Primary outcome includes target IOP at ≤21, ≤17, and ≤15 mm Hg; complete (target IOP without medications), and qualified success (target IOP regardless of medications). Secondary outcomes include bleb evaluation, according to Moorfields Bleb Grading System (MBGS); spectral domain optical coherence tomography (SD-OCT) examination; number of glaucoma medications; and frequency of postoperative adjunctive procedures and complications. RESULTS: The mean preoperative IOP was 26.5 (±5.2) in MMC and 27.3 (±6.0) in OLO eyes, without statistical significance. One-day postoperatively, the IOP dropped to 5.2 (±3.5) and 9.2 (±5.5) mm Hg, respectively (P=0.009). The IOP reduction was significant at end point in all groups (P=0.01), with a mean IOP of 16.0 (±2.9) and 16.5 (±2.1) mm Hg in MMC and OLO, respectively. The rates and Kaplan-Meier curves did not differ for both complete and qualified success at any target IOP. The bleb height in OLO group was higher than MMC one (P<0.05). SD-OCT analysis of successful/unsuccessful bleb in patients with or without complete success at IOP ≤17  mm Hg indicated a sensitivity of 83% and 73% and a specificity of 75% and 67%, respectively, for MMC and OLO groups. No adverse reaction to OLO was noted. CONCLUSIONS: Our results suggest that OLO implant could be a new, safe, and effective alternative to MMC, with similar long-term success rate

    The global methane budget 2000-2017

    Get PDF
    Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008-2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr-1 (range 550-594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr-1 or ĝ1/4 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336-376 Tg CH4 yr-1 or 50 %-65 %). The mean annual total emission for the new decade (2008-2017) is 29 Tg CH4 yr-1 larger than our estimate for the previous decade (2000-2009), and 24 Tg CH4 yr-1 larger than the one reported in the previous budget for 2003-2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr-1, range 594-881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (ĝ1/4 65 % of the global budget, &lt; 30ĝ  N) compared to mid-latitudes (ĝ1/4 30 %, 30-60ĝ  N) and high northern latitudes (ĝ1/4 4 %, 60-90ĝ  N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr-1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr-1 by 8 Tg CH4 yr-1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning. The data presented here can be downloaded from https://doi.org/10.18160/GCP-CH4-2019 (Saunois et al., 2020) and from the Global Carbon Project

    Coronin-1A Links Cytoskeleton Dynamics to TCRαβ-Induced Cell Signaling

    Get PDF
    Actin polymerization plays a critical role in activated T lymphocytes both in regulating T cell receptor (TCR)-induced immunological synapse (IS) formation and signaling. Using gene targeting, we demonstrate that the hematopoietic specific, actin- and Arp2/3 complex-binding protein coronin-1A contributes to both processes. Coronin-1A-deficient mice specifically showed alterations in terminal development and the survival of αβT cells, together with defects in cell activation and cytokine production following TCR triggering. The mutant T cells further displayed excessive accumulation yet reduced dynamics of F-actin and the WASP-Arp2/3 machinery at the IS, correlating with extended cell-cell contact. Cell signaling was also affected with the basal activation of the stress kinases sAPK/JNK1/2; and deficits in TCR-induced Ca2+ influx and phosphorylation and degradation of the inhibitor of NF-κB (IκB). Coronin-1A therefore links cytoskeleton plasticity with the functioning of discrete TCR signaling components. This function may be required to adjust TCR responses to selecting ligands accounting in part for the homeostasis defect that impacts αβT cells in coronin-1A deficient mice, with the exclusion of other lympho/hematopoietic lineages

    A global database of dissolved organic matter (DOM) concentration measurements in coastal waters (CoastDOM v1)

    Get PDF
    Measurements of dissolved organic carbon (DOC), nitrogen (DON), and phosphorus (DOP) con-centrations are used to characterize the dissolved organic matter (DOM) pool and are important components ofbiogeochemical cycling in the coastal ocean. Here, we present the first edition of a global database (CoastDOMv1; available at https://doi.org/10.1594/PANGAEA.964012, L\uf8nborg et al., 2023) compiling previously pub-lished and unpublished measurements of DOC, DON, and DOP in coastal waters. These data are complementedby hydrographic data such as temperature and salinity and, to the extent possible, other biogeochemical variables(e.g. chlorophyll a, inorganic nutrients) and the inorganic carbon system (e.g. dissolved inorganic carbon andtotal alkalinity). Overall, CoastDOM v1 includes observations of concentrations from all continents. However,most data were collected in the Northern Hemisphere, with a clear gap in DOM measurements from the SouthernHemisphere. The data included were collected from 1978 to 2022 and consist of 62 338 data points for DOC,20 356 for DON, and 13 533 for DOP. The number of measurements decreases progressively in the sequenceDOC &gt; DON &gt; DOP, reflecting both differences in the maturity of the analytical methods and the greater focuson carbon cycling by the aquatic science community. The global database shows that the average DOC concen-tration in coastal waters (average \ub1 standard deviation (SD): 182 \ub1 314 μmol C L−1; median: 103 μmol C L−1) is13-fold higher than the average coastal DON concentration (13.6 \ub1 30.4 μmol N L−1; median: 8.0 μmol N L−1),which is itself 39-fold higher than the average coastal DOP concentration (0.34 \ub1 1.11 μmol P L−1; median:0.18 μmol P L−1). This dataset will be useful for identifying global spatial and temporal patterns in DOM and willhelp facilitate the reuse of DOC, DON, and DOP data in studies aimed at better characterizing local biogeochem-ical processes; closing nutrient budgets; estimating carbon, nitrogen, and phosphorous pools; and establishing abaseline for modelling future changes in coastal waters

    The global methane budget 2000–2017

    Get PDF
    Understanding and quantifying the global methane (CH4) budget is important for assessing realistic pathways to mitigate climate change. Atmospheric emissions and concentrations of CH4 continue to increase, making CH4 the second most important human-influenced greenhouse gas in terms of climate forcing, after carbon dioxide (CO2). The relative importance of CH4 compared to CO2 depends on its shorter atmospheric lifetime, stronger warming potential, and variations in atmospheric growth rate over the past decade, the causes of which are still debated. Two major challenges in reducing uncertainties in the atmospheric growth rate arise from the variety of geographically overlapping CH4 sources and from the destruction of CH4 by short-lived hydroxyl radicals (OH). To address these challenges, we have established a consortium of multidisciplinary scientists under the umbrella of the Global Carbon Project to synthesize and stimulate new research aimed at improving and regularly updating the global methane budget. Following Saunois et al. (2016), we present here the second version of the living review paper dedicated to the decadal methane budget, integrating results of top-down studies (atmospheric observations within an atmospheric inverse-modelling framework) and bottom-up estimates (including process-based models for estimating land surface emissions and atmospheric chemistry, inventories of anthropogenic emissions, and data-driven extrapolations). For the 2008–2017 decade, global methane emissions are estimated by atmospheric inversions (a top-down approach) to be 576 Tg CH4 yr−1 (range 550–594, corresponding to the minimum and maximum estimates of the model ensemble). Of this total, 359 Tg CH4 yr−1 or ∼ 60 % is attributed to anthropogenic sources, that is emissions caused by direct human activity (i.e. anthropogenic emissions; range 336–376 Tg CH4 yr−1 or 50 %–65 %). The mean annual total emission for the new decade (2008–2017) is 29 Tg CH4 yr−1 larger than our estimate for the previous decade (2000–2009), and 24 Tg CH4 yr−1 larger than the one reported in the previous budget for 2003–2012 (Saunois et al., 2016). Since 2012, global CH4 emissions have been tracking the warmest scenarios assessed by the Intergovernmental Panel on Climate Change. Bottom-up methods suggest almost 30 % larger global emissions (737 Tg CH4 yr−1, range 594–881) than top-down inversion methods. Indeed, bottom-up estimates for natural sources such as natural wetlands, other inland water systems, and geological sources are higher than top-down estimates. The atmospheric constraints on the top-down budget suggest that at least some of these bottom-up emissions are overestimated. The latitudinal distribution of atmospheric observation-based emissions indicates a predominance of tropical emissions (∼ 65 % of the global budget, < 30∘ N) compared to mid-latitudes (∼ 30 %, 30–60∘ N) and high northern latitudes (∼ 4 %, 60–90∘ N). The most important source of uncertainty in the methane budget is attributable to natural emissions, especially those from wetlands and other inland waters. Some of our global source estimates are smaller than those in previously published budgets (Saunois et al., 2016; Kirschke et al., 2013). In particular wetland emissions are about 35 Tg CH4 yr−1 lower due to improved partition wetlands and other inland waters. Emissions from geological sources and wild animals are also found to be smaller by 7 Tg CH4 yr−1 by 8 Tg CH4 yr−1, respectively. However, the overall discrepancy between bottom-up and top-down estimates has been reduced by only 5 % compared to Saunois et al. (2016), due to a higher estimate of emissions from inland waters, highlighting the need for more detailed research on emissions factors. Priorities for improving the methane budget include (i) a global, high-resolution map of water-saturated soils and inundated areas emitting methane based on a robust classification of different types of emitting habitats; (ii) further development of process-based models for inland-water emissions; (iii) intensification of methane observations at local scales (e.g., FLUXNET-CH4 measurements) and urban-scale monitoring to constrain bottom-up land surface models, and at regional scales (surface networks and satellites) to constrain atmospheric inversions; (iv) improvements of transport models and the representation of photochemical sinks in top-down inversions; and (v) development of a 3D variational inversion system using isotopic and/or co-emitted species such as ethane to improve source partitioning
    corecore