100 research outputs found

    Resolving forward-reverse logistics multi-period model using evolutionary algorithms

    Get PDF
    © 2016 Elsevier Ltd In the changing competitive landscape and with growing environmental awareness, reverse logistics issues have become prominent in manufacturing organizations. As a result there is an increasing focus on green aspects of the supply chain to reduce environmental impacts and ensure environmental efficiency. This is largely driven by changes made in government rules and regulations with which organizations must comply in order to successfully operate in different regions of the world. Therefore, manufacturing organizations are striving hard to implement environmentally efficient supply chains while simultaneously maximizing their profit to compete in the market. To address the issue, this research studies a forward-reverse logistics model. This paper puts forward a model of a multi-period, multi-echelon, vehicle routing, forward-reverse logistics system. The network considered in the model assumes a fixed number of suppliers, facilities, distributors, customer zones, disassembly locations, re-distributors and second customer zones. The demand levels at customer zones are assumed to be deterministic. The objective of the paper is to maximize the total expected profit and also to obtain an efficient route for the vehicle corresponding to an optimal/near optimal solution. The proposed model is resolved using Artificial Immune System (AIS) and Particle Swarm Optimization (PSO) algorithms. The findings show that for the considered model, AIS works better than the PSO. This information is important for a manufacturing organization engaged in reverse logistics programs and in running units efficiently. This paper also contributes to the limited literature on reverse logistics that considers costs and profit as well as vehicle route management

    Fuzzy Data Envelopment Analysis:An Adjustable Approach

    Get PDF
    Possibilistic Data Envelopment Analysis (PDEA) is one of the most applicable and popular approaches in the literature to deal with imprecise and ambiguous data in DEA models. In this approach, with respect to tendency of decision maker (DM) in taking optimistic, pessimistic and compromise attitude, three measures including possibility, necessity and credibility measures are used to form the Fuzzy DEA (FDEA) models, respectively. However, decision makers may have different preference and so it is necessary to customize fuzzy DEA models according to properties of DMUs. This paper proposes a novel fuzzy DEA model based on general fuzzy measure in which the attitude of DMUs could be determined by the optimistic-pessimistic parameters. As a result, the proposed FDEA model is general, applicable, flexible, and adjustable based on each DMUs. A numerical example is used to explain the proposed approach while usefulness and applicability of this approach have been illustrated using a real data set to measure efficiency of 38 hospital in United States

    Social sustainability of treatment technologies for bioenergy generation from the municipal solid waste using best worst method

    No full text
    Despite the fundamental role of the social aspect in the implementation of sustainability in the bio-based industries, most of the sustainability assessments research have addressed the environmental and economic dimensions. However, the social dimension has been neglected and it can cause an irreparable outcome in the biotechnology industries. Following this issue, this study propounds a modified systemic approach for a social sustainability impact assessment of the treatment technologies for converting waste into bioenergy, based on a review on the common social assessment methods. As it is known, the guideline presented by the United Nations Environment Program (UNEP) and the Society of Environmental Toxicology and Chemistry (2009) due to considering social life cycle assessment has a comprehensive look at the stakeholders. Therefore, in this paper, UNEP method was selected. However, it needs to be modified based on the bio-energy supply chain derived from municipal solid waste. For this purpose, the bioenergy value chain derived from municipal solid waste was designed and combined with UNEP guideline, to complete the level of stakeholder subgroups and the levels of the indicators. The final method of the social assessment system was presented to the board of experts and finalized. In order to design the measurement part of the social assessment system, because of a multi criteria decision making nature of the social sustainability evaluation of the conversion technologies of municipal solid waste to bio-energies, a recent developed multi-criteria decision making method so-called Best Worst Method (BWM) was used in two stages. The criteria are ranked according to their average weight obtained through Best Worst method. One of the major novelties in this research is the way of application of the best worst technique in the second stage. The model was implemented in the case of Tehran as one of the pioneering Iranian municipalities with high potential to produce bioenergy. The results of this study help decision makers to decide where to concentrate their attention during the implementation stage, and to increase social sustainability in their bioenergy supply chains derived waste

    Improving the Decision-making of Reverse Logistics Network Design Part II: An Improved Scenario-based Solution Method and Numerical Experimentation

    No full text
    The study of the network design problems related to reverse supply chain and reverse logistics is of great interest for both academicians and practitioners due to its important role for a sustainable society. However, reverse logistics network design is a complex decision-making problem that involves several interactive factors and faces many uncertainties. Thus, in order to improve the reverse logistics network design, this paper proposes a new optimization model under stochastic environment and an improved solution method for network design of a multi-stage multi-product reveres supply chain. The study is presented in a series of two parts. Part I presents the relevant literature and formulates a stochastic mixed integer linear programming (MILP) for improving the decision-making of the reverse logistics network design. Part II improves the solution methods for the proposed stochastic programming and illustrates the application through a numerical experimentation
    • 

    corecore