104 research outputs found

    A Simple and Highly Structured Procaine Hydrochloride as Fluorescent Quenching Chemosensor for Trace Determination of Mercury Species in Water

    Get PDF
    An ultrasensitive, simple and highly selective spectrofluorometric strategy for quantifying traces of mercury(II) in environmental water has been established using the fluorescent probe procaine hydrochloride (PQ+.Cl−). The procedure was based upon the formation of the ternary ion associate complex [(PQ+)2.(HgI4)2−] between PQ+.Cl− and mercury(II) in iodide media at pH 9.0–10.0 with its subsequent extraction onto dichloromethane accompanied by a change in fluorescence intensity at λex/em = 268/333 nm. The developed strategy exhibited a linear range of 1–114 Όg L−1 with lower limit of detection (LOD) and quantification (LOQ) of mercury(II) 1.3 and 3.98 nM, respectively. Intra and inter-day laboratory accuracy and precision for trace analysis of mercury(II) in water were performed. Complexed mercury(II) in environmental water, chemical speciation and successful literature comparison was performed. The proposed system offered excellent selectivity towards mercury(II) ions examined in the presence of competent ions in excess, relevant to real water samples. The method was applied for analysis of mercury(II) in tap water samples. Statistical comparison (Student’s t and F tests) of the proposed method with the reference ICP-OES method revealed no significant differences in the accuracy and precision

    Chromatographic Separation, Total Determination and Chemical Speciation of Mercury in Environmental Water Samples Using 4-(2-Thiazolylazo) Resorcinol-Based Polyurethane Foam Sorbent-Packed Column

    Get PDF
    A simple method has been developed for quantitative retention of traces of mercury(II) ions from aqueous media using polyurethane foams (PUFs) loaded with 4-(2-thiazolylazo) resorcinol (TAR). The kinetics and thermodynamics of the sorption of mercury(II) ions onto PUFs were studied. The sorption of mercury(II) ions onto PUF follows a first-order rate equation with k = 0.176 ± 0.010 min−1. The negative values of ΔH and ΔS may be interpreted as the exothermic chemisorption process and indicative of a faster chemisorption onto the active sites of the sorbent. The sorption data followed Langmuir, Freundlich and Dubinin-Radushkevich (D–R) isotherm models. The D-R parameters ÎČ, KDR and E were 0.329 mol2 kJ−2, 0.001 Όmol g−1 and 1.23 ± 0.07 kJ/mol for the TAR-loaded PUFs, respectively. An acceptable retention and recovery (99.6 ± 1.1%) of mercury(II) ions in water at ≀10 ppb by the TAR-treated PUFs packed columns were achieved. A retention mechanism, involving absorption related to “solvent extraction” and an “added component” for surface adsorption, was suggested for the retention of mercury(II) ions by the used solid phase extractor. The performance of TAR-immobilized PUFs packed column in terms of the number (N), the height equivalent to a theoretical plate (HETP), the breakthrough and critical capacities of mercury(II) ion uptake by the sorbent packed column were found to be 50.0 ± 1.0, 1.01 ± 0.02 mm, 8.75 and 13.75 mg/g, respectively, at 5 mL/min flow rate

    Ultrasensitive, rapid and inexpensive detection of DNA using paper based lateral flow assay

    Get PDF
    Sensitive, specific, rapid, inexpensive and easy-to-use nucleic acid tests for use at the point-of-need are critical for the emerging field of personalised medicine for which companion diagnostics are essential, as well as for application in low resource settings. Here we report on the development of a point-of-care nucleic acid lateral flow test for the direct detection of isothermally amplified DNA. The recombinase polymerase amplification method is modified slightly to use tailed primers, resulting in an amplicon with a duplex flanked by two single stranded DNA tails. This tailed amplicon facilitates detection via hybridisation to a surface immobilised oligonucleotide capture probe and a gold nanoparticle labelled reporter probe. A detection limit of 1 7 10−11 M (190 amol), equivalent to 8.67 7 105 copies of DNA was achieved, with the entire assay, both amplification and detection, being completed in less than 15 minutes at a constant temperature of 37 \ub0C. The use of the tailed primers obviates the need for hapten labelling and consequent use of capture and reporter antibodies, whilst also avoiding the need for any post-amplification processing for the generation of single stranded DNA, thus presenting an assay that can facilely find application at the point of need

    Phytoremediation using Aquatic Plants

    Get PDF

    2014 atomic spectrometry update – a review of advances in environmental analysis

    Full text link

    Incorporation of zinc oxide nanoparticles and it’s antibacterial effect on toothpaste

    No full text
    Abstract Background Dental caries is the most prevalent oral infection affecting the individuals worldwide, and Streptococcus mutans is the major microorganism involved in its pathology. Thus, the aim was to evaluate the antibacterial effect of addition of nanozinc particles on toothpaste with different concentrations. The study was carried out as Deburdent toothpaste was used as a control group, and nanozinc particles were added with different concentrations to the same toothpaste, and antibacterial test for each group was evaluated. Methods Group 1: (control group) toothpaste only. Group 2: 0.5% of nanozinc particles added to toothpaste. Group 3: 1% of nanozinc particles added to toothpaste. The three groups were incubated for 24 h at 37 °C, and the antibacterial test was tested for all groups using agar well diffusion method. Results All the samples had antibacterial effect against streptococcus mutans. Meanwhile, Group 3 has showed the greatest zone of inhibition compared to the control group showed the lowest effect. Conclusions One % of nanozinc particles were more efficient on Sterptoccocus mutans in comparison with 0.5% nanozinc particles concentration effect

    Enaminonitrile as Building Block in Heterocyclic Synthesis: Synthesis of Novel 4H-Furo[2,3-d][1,3]oxazin-4-one and Furo[2,3-d]pyrimidin-4(3H)-one Derivatives

    No full text
    2-Amino-4,5-diphenylfuran-3-carbonitrile 1 was utilized as building block for the construction of new furo[2,3-d]pyrimidin-4(3H)-one derivative 2 and 4H-furo[2,3-d][1,3]oxazin-4-one derivative 3 via treatment with acetic anhydride and benzoyl chloride, respectively. The 4H-furo[2,3-d][1,3]oxazin-4-one derivative 3 was transformed into novel furo[2,3-d]pyrimidin-4(3H)-ones 4–8, tetrazolylfuran derivative 10, and furo[3,2-d]imadazolone derivative 11 via reaction with various nitrogen nucleophiles. The structure features of the synthesized compounds were established from their spectral and elemental analyses
    • 

    corecore