80 research outputs found

    The AGN contribution to the UV-FIR luminosities of interacting galaxies and its role in identifying the Main Sequence

    Get PDF
    Emission from active galactic nuclei (AGNs) is known to play an important role in the evolution of many galaxies including luminous and ultraluminous systems (U/LIRGs), as well as merging systems. However, the extent, duration, and exact effects of its influence are still imperfectly understood. To assess the impact of AGNs on interacting systems, we present a Spectral Energy Distribution (SED) analysis of a sample of 189 nearby galaxies. We gather and systematically re-reduce archival broad-band imaging mosaics from the ultraviolet to the far-infrared using data from GALEX, SDSS, 2MASS, IRAS, WISE, Spitzer and Herschel. We use spectroscopy from Spitzer/IRS to obtain fluxes from fine-structure lines that trace star formation and AGN activity. Utilizing the SED modelling and fitting tool CIGALE, we derive the physical conditions of the ISM, both in star-forming regions and in nuclear regions dominated by the AGN in these galaxies. We investigate how the star formation rates (SFRs) and the fractional AGN contributions (fAGNf_{\rm{AGN}}) depend on stellar mass, galaxy type, and merger stage. We find that luminous galaxies more massive than about 1010M∗10^{10} \rm{M}_{*} are likely to deviate significantly from the conventional galaxy main-sequence relation. Interestingly, infrared AGN luminosity and stellar mass in this set of objects are much tighter than SFR and stellar mass. We find that buried AGNs may occupy a locus between bright starbursts and pure AGNs in the fAGNf_{\rm{AGN}}-[Ne V]/[Ne II] plane. We identify a modest correlation between fAGNf_{\rm{AGN}} and mergers in their later stages.Comment: Accepted for publication in MNRAS; 24 pages, 15 figures, 3 tables (plus appendix

    The prevalence of dental erosion and associated risk factors in 12-13-year-old school children in Southern China

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dental erosion has been investigated in developed and developing countries and the prevalence varies considerably in different countries, geographic locations, and age groups. With the lifestyle of the Chinese people changing significantly over the decades, dental erosion has begun to receive more attention. However, the information about dental erosion in China is scarce. The purpose of this study was to explore the prevalence of dental erosion and associated risk factors in 12-13-year-old school children in Guangzhou, Southern China.</p> <p>Methods</p> <p>This cross-sectional survey was performed by two trained, calibrated examiners. A stratified random sample of 12-13-year-old children (774 boys and 725 girls) from 10 schools was examined for dental erosion using the diagnostic criteria of Eccles and the index of O'Sullivan was applied to record the distribution, severity, and amount of the lesions. Data on the socio-economic status, health behaviours, and general health involved in the etiology of dental erosion were obtained from a self-completed questionnaire. The analyses were performed using SPSS software.</p> <p>Results</p> <p>At least one tooth surface with signs of erosion was found in 416 children (27.3%). The most frequently affected teeth were the central incisors (upper central incisors, 16.3% and 15.9%; lower central incisors, 17.4% and 14.8%). The most frequently affected surface was the incisal or occlusal edge (43.2%). The loss of enamel contour was present in 54.6% of the tooth surfaces with erosion. Of the affected tooth surfaces, 69.3% had greater than one-half of the tooth surface was affected. The results from logistic regression analysis demonstrated that the children who were female, consumed carbonated drinks once a week or more, and those whose mothers were educated to the primary level tended to have more dental erosion.</p> <p>Conclusions</p> <p>Dental erosion in 12-13-year-old Chinese school children is becoming a significant problem. A strategy of offering preventive care, including more campaigns promoting a healthier lifestyle for those at risk of dental erosion should be conducted in Chinese children and their parents.</p

    Evaluation of effectiveness of class-based nutrition intervention on changes in soft drink and milk consumption among young adults

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>During last few decades, soft drink consumption has steadily increased while milk intake has decreased. Excess consumption of soft drinks and low milk intake may pose risks of several diseases such as dental caries, obesity, and osteoporosis. Although beverage consumption habits form during young adulthood, which has a strong impact on beverage choices in later life, nutrition education programs on beverages are scarce in this population. The purpose of this investigation was 1) to assess soft drink and milk consumption and 2) to evaluate the effectiveness of 15-week class-based nutrition intervention in changing beverage choices among college students.</p> <p>Methods</p> <p>A total of 80 college students aged 18 to 24 years who were enrolled in basic nutrition class participated in the study. Three-day dietary records were collected, verified, and analyzed before and after the intervention. Class lectures focused on healthful dietary choices related to prevention of chronic diseases and were combined with interactive hands on activities and dietary feedback.</p> <p>Results</p> <p>Class-based nutrition intervention combining traditional lecture and interactive activities was successful in decreasing soft drink consumption. Total milk consumption, specifically fat free milk, increased in females and male students changed milk choice favoring skim milk over low fat milk. (1% and 2%).</p> <p>Conclusion</p> <p>Class-based nutrition education focusing on prevention of chronic diseases can be an effective strategy in improving both male and female college students' beverage choices. Using this type of intervention in a general nutrition course may be an effective approach to motivate changes in eating behaviors in a college setting.</p

    The influence of alcohol industry-sponsored “Gulder Ultimate Search” reality television series on the drinking behaviors of Nigerian youths

    Get PDF
    Background: Alcohol consumption among youths and its related problems are increasing in Nigeria. Whilst one of the reasons for this is due to the marketing activities of the transnational alcohol corporations, there are no written national alcohol control policies that regulate alcohol marketing in Nigeria. Methods: This article draws on in-depth interviews with 31 Nigerian university students (aged 19–23 years) to explore the extent to which the “Gulder Ultimate Search” (GUS) reality television show influences alcohol consumption amongst GUS contestants, television audiences and those who participate in GUS promotional activities. Results: The results show that GUS was very popular amongst students and their knowledge of the reality show was high, to the extent that they were able to identify the particular alcohol company that sponsors the reality television program, the number of contestants that compete for the prizes in each season, and what can be won by the contestants or television viewers. GUS influences the drinking behaviors of contestants because one of the criteria for participation is to present 10 or more recently used “cans” of “Gulder beer” during the screening exercise. GUS also appears to influence the drinking behaviors of television viewers and those who participate in promotions due to product placement, direct advertisements and promotional activities that accompany the “Fan-Based Edition” aspect of GUS. Conclusion: Overall, GUS is a disguised marketing strategy to promote brand awareness, and to increase sales and consumption. Alcohol control policies that regulate event sponsorship and promote public health should be implemented in Nigeria

    Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    Get PDF
    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal

    Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence?

    Get PDF
    Many flood events involving water and sediments have been characterized using classic hydraulics principles, assuming the existence of critical flow and many other simplifications. In this paper, hyperconcentrated flow discharge was evaluated by using paleoflood reconstructions (based on paleostage indicators [PSI]) combined with a detailed hydraulic analysis of the critical flow assumption. The exact location where this condition occurred was established by iteratively determining the corresponding cross section, so that specific energy is at a minimum. In addition, all of the factors and parameters involved in the process were assessed, especially those related to the momentum equation, existing shear stresses in the wetted perimeter, and nonhydrostatic and hydrostatic pressure distributions. The superelevation of the hyperconcentrated flow, due to the flow elevation curvature, was also estimated and calibrated with the PSI. The estimated peak discharge was established once the iterative process was unable to improve the fit between the simulated depth and the depth observed from the PSI. The methodological approach proposed here can be applied to other higher-gradient mountainous torrents with a similar geomorphic configuration to the one studied in this paper. Likewise, results have been derived with fewer uncertainties than those obtained from standard hydraulic approaches, whose simplifying assumptions have not been considered. © 2011 by the American Geophysical Union.This work was funded by the Spanish Ministry of Science and Innovation within the framework of the CICYT Dendro-Avenidas project (CGL2007-62063) and the MAS Dendro-Avenidas project (CGL2010-19274). We are especially grateful to Robert D. Jarrett, Vern Manville, and one anonymous reviewer for their comments and helpful suggestions on previous versions of this manuscript.Bodoque, J.; Eguibar GalĂĄn, MÁ.; Diez-Herrero, A.; Gutierrez-Perez, I.; Ruiz-Villanueva, V. (2011). Can the discharge of a hyperconcentrated flow be estimated from paleoflood evidence?. Water Resources Research. 47(W12535). doi:10.1029/2011WR010380S47W12535Alcoverro, J., Corominas, J., & GĂłmez, M. (1999). The Barranco de ArĂĄs flood of 7 August 1996 (Biescas, Central Pyrenees, Spain). Engineering Geology, 51(4), 237-255. doi:10.1016/s0013-7952(98)00076-3Alexandrov, Y., Laronne, J. B., & Reid, I. (2007). Intra-event and inter-seasonal behaviour of suspended sediment in flash floods of the semi-arid northern Negev, Israel. Geomorphology, 85(1-2), 85-97. doi:10.1016/j.geomorph.2006.03.013BAAS, J. H., & BEST, J. L. (2008). The dynamics of turbulent, transitional and laminar clay-laden flow over a fixed current ripple. Sedimentology, 55(3), 635-666. doi:10.1111/j.1365-3091.2007.00916.xBallesteros, J. A., Bodoque, J. M., DĂ­ez-Herrero, A., Sanchez-Silva, M., & Stoffel, M. (2011). Calibration of floodplain roughness and estimation of flood discharge based on tree-ring evidence and hydraulic modelling. Journal of Hydrology, 403(1-2), 103-115. doi:10.1016/j.jhydrol.2011.03.045Bathurst, J. C. (1985). Flow Resistance Estimation in Mountain Rivers. Journal of Hydraulic Engineering, 111(4), 625-643. doi:10.1061/(asce)0733-9429(1985)111:4(625)BERZI, D., & JENKINS, J. T. (2008). A theoretical analysis of free-surface flows of saturated granular–liquid mixtures. Journal of Fluid Mechanics, 608, 393-410. doi:10.1017/s0022112008002401Biron, P. M., Lane, S. N., Roy, A. G., Bradbrook, K. F., & Richards, K. S. (1998). Sensitivity of bed shear stress estimated from vertical velocity profiles: the problem of sampling resolution. Earth Surface Processes and Landforms, 23(2), 133-139. doi:10.1002/(sici)1096-9837(199802)23:23.0.co;2-nBisantino, T., Fischer, P., & Gentile, F. (2009). Rheological characteristics of debris-flow material in South-Gargano watersheds. Natural Hazards, 54(2), 209-223. doi:10.1007/s11069-009-9462-4Bousmar, D., & Zech, Y. (1999). Momentum Transfer for Practical Flow Computation in Compound Channels. Journal of Hydraulic Engineering, 125(7), 696-706. doi:10.1061/(asce)0733-9429(1999)125:7(696)Costa, J. E. (1984). Physical Geomorphology of Debris Flows. Developments and Applications of Geomorphology, 268-317. doi:10.1007/978-3-642-69759-3_9COUSSOT, P., & MEUNIER, M. (1996). Recognition, classification and mechanical description of debris flows. Earth-Science Reviews, 40(3-4), 209-227. doi:10.1016/0012-8252(95)00065-8Coussot, P., Laigle, D., Arattano, M., Deganutti, A., & Marchi, L. (1998). Direct Determination of Rheological Characteristics of Debris Flow. Journal of Hydraulic Engineering, 124(8), 865-868. doi:10.1061/(asce)0733-9429(1998)124:8(865)Desilets, S. L. E., FerrĂ©, T. P. A., & Ekwurzel, B. (2008). Flash flood dynamics and composition in a semiarid mountain watershed. Water Resources Research, 44(12). doi:10.1029/2007wr006159Dietrich, W. E., & Whiting, P. (1989). Boundary shear stress and sediment transport in river meanders of sand and gravel. River Meandering, 1-50. doi:10.1029/wm012p0001Ervine, D. A., Willetts, B. B., Sellin, R. H. J., & Lorena, M. (1993). Factors Affecting Conveyance in Meandering Compound Flows. Journal of Hydraulic Engineering, 119(12), 1383-1399. doi:10.1061/(asce)0733-9429(1993)119:12(1383)Gaume, E., Livet, M., Desbordes, M., & Villeneuve, J.-P. (2004). Hydrological analysis of the river Aude, France, flash flood on 12 and 13 November 1999. Journal of Hydrology, 286(1-4), 135-154. doi:10.1016/j.jhydrol.2003.09.015Grant, G. E. (1997). Critical flow constrains flow hydraulics in mobile-bed streams: A new hypothesis. Water Resources Research, 33(2), 349-358. doi:10.1029/96wr03134Hessel, R. (2006). Consequences of hyperconcentrated flow for process-based soil erosion modelling on the Chinese Loess Plateau. Earth Surface Processes and Landforms, 31(9), 1100-1114. doi:10.1002/esp.1307House, P. K., & Baker, V. R. (2001). Paleohydrology of flash floods in small desert watersheds in western Arizona. Water Resources Research, 37(6), 1825-1839. doi:10.1029/2000wr900408House, P. K., & Pearthree, P. A. (1995). A geomorphologic and hydrologic evaluation of an extraordinary flood discharge estimate: Bronco Creek, Arizona. Water Resources Research, 31(12), 3059-3073. doi:10.1029/95wr02428Hungr, O. (s. f.). Classification and terminology. Springer Praxis Books, 9-23. doi:10.1007/3-540-27129-5_2Iverson, R. M. (1997). The physics of debris flows. Reviews of Geophysics, 35(3), 245-296. doi:10.1029/97rg00426Iverson , R. M. 2003 The debris-flow rheology myth, paper presented at debris-flow hazards mitigation: mechanics, prediction, and assessment 303 314 Millpress Rotterdam, Davos, SwitzerlandIverson, R. M., Logan, M., LaHusen, R. G., & Berti, M. (2010). The perfect debris flow? Aggregated results from 28 large-scale experiments. Journal of Geophysical Research, 115(F3). doi:10.1029/2009jf001514Jarrett, R. D. (1987). Closure to « Hydraulics of High‐Gradient Streams » by Robert D. Jarrett (November, 1984). Journal of Hydraulic Engineering, 113(7), 927-929. doi:10.1061/(asce)0733-9429(1987)113:7(927)Jarrett, R. D., & Tomlinson, E. M. (2000). Regional interdisciplinary paleoflood approach to assess extreme flood potential. Water Resources Research, 36(10), 2957-2984. doi:10.1029/2000wr900098Lavigne, F., & Suwa, H. (2004). Contrasts between debris flows, hyperconcentrated flows and stream flows at a channel of Mount Semeru, East Java, Indonesia. Geomorphology, 61(1-2), 41-58. doi:10.1016/j.geomorph.2003.11.005McCoy, S. W., Kean, J. W., Coe, J. A., Staley, D. M., Wasklewicz, T. A., & Tucker, G. E. (2010). Evolution of a natural debris flow: In situ measurements of flow dynamics, video imagery, and terrestrial laser scanning. Geology, 38(8), 735-738. doi:10.1130/g30928.1Pierson , T. C. 2005 Distinguishing between debris flows and floods from field evidence Small Watersheds U.S. Geological Survey 2004 3142Pierson, T. C. (s. f.). Hyperconcentrated flow — transitional process between water flow and debris flow. Springer Praxis Books, 159-202. doi:10.1007/3-540-27129-5_8Pierson, T. C., & Costa, J. E. (1987). A rheologic classification of subaerial sediment-water flows. Reviews in Engineering Geology, 1-12. doi:10.1130/reg7-p1Pierson, T. C., & Scott, K. M. (1985). Downstream Dilution of a Lahar: Transition From Debris Flow to Hyperconcentrated Streamflow. Water Resources Research, 21(10), 1511-1524. doi:10.1029/wr021i010p01511Rico, M., Benito, G., & Barnolas, A. (2001). Combined palaeoflood and rainfall–runoff assessment of mountain floods (Spanish Pyrenees). Journal of Hydrology, 245(1-4), 59-72. doi:10.1016/s0022-1694(01)00339-0Roca, M., MartĂ­n-Vide, J. P., & Moreta, P. J. M. (2009). Modelling a torrential event in a river confluence. Journal of Hydrology, 364(3-4), 207-215. doi:10.1016/j.jhydrol.2008.10.020Ruiz-Villanueva, V., Bodoque, J. M., DĂ­ez-Herrero, A., & Calvo, C. (2011). Triggering threshold precipitation and soil hydrological characteristics of shallow landslides in granitic landscapes. Geomorphology, 133(3-4), 178-189. doi:10.1016/j.geomorph.2011.05.018Shiono, K., & Knight, D. W. (1991). Turbulent open-channel flows with variable depth across the channel. Journal of Fluid Mechanics, 222(-1), 617. doi:10.1017/s0022112091001246Shu, A., & Fei, X. (2008). Sediment transport capacity of hyperconcentrated flow. Science in China Series G: Physics, Mechanics and Astronomy, 51(8), 961-975. doi:10.1007/s11433-008-0108-4Siviglia, A., & Cantelli, A. (2005). Effect of bottom curvature on mudflow dynamics: Theory and experiments. Water Resources Research, 41(11). doi:10.1029/2005wr004475Sleiti, A. K., & Kapat, J. S. (2008). Effect of Coriolis and centrifugal forces on turbulence and transport at high rotation and density ratios in a rib-roughened channel. International Journal of Thermal Sciences, 47(5), 609-619. doi:10.1016/j.ijthermalsci.2007.06.008SMITH, G. A. (1986). Coarse-grained nonmarine volcaniclastic sediment: Terminology and depositional process. Geological Society of America Bulletin, 97(1), 1. doi:10.1130/0016-7606(1986)972.0.co;2Sohn, Y. K., Rhee, C. W., & Kim, B. C. (1999). Debris Flow and Hyperconcentrated Flood‐Flow Deposits in an Alluvial Fan, Northwestern Part of the Cretaceous Yongdong Basin, Central Korea. The Journal of Geology, 107(1), 111-132. doi:10.1086/314334Sosio, R., & Crosta, G. B. (2009). Rheology of concentrated granular suspensions and possible implications for debris flow modeling. Water Resources Research, 45(3). doi:10.1029/2008wr006920Svendsen, J., Stollhofen, H., Krapf, C. B. ., & Stanistreet, I. G. (2003). Mass and hyperconcentrated flow deposits record dune damming and catastrophic breakthrough of ephemeral rivers, Skeleton Coast Erg, Namibia. Sedimentary Geology, 160(1-3), 7-31. doi:10.1016/s0037-0738(02)00334-2Tinkler, K. J. (1997). Critical flow in rockbed streams with estimated values for Manning’s n. Geomorphology, 20(1-2), 147-164. doi:10.1016/s0169-555x(97)00011-1Trieste , D. J. R. D. Jarrett 1987 Roughness coefficients of large floodsVan Maren, D. S., Winterwerp, J. C., Wu, B. S., & Zhou, J. J. (2009). Modelling hyperconcentrated flow in the Yellow River. Earth Surface Processes and Landforms, 34(4), 596-612. doi:10.1002/esp.1760Wan, Z., Wang, Z., & Julien, P. Y. (1994). Hyperconcentrated Flow. Journal of Hydraulic Engineering, 120(10), 1234-1234. doi:10.1061/(asce)0733-9429(1994)120:10(1234)Winterwerp, J. C. (2001). Stratification effects by cohesive and noncohesive sediment. Journal of Geophysical Research: Oceans, 106(C10), 22559-22574. doi:10.1029/2000jc000435Jiongxin, X. (1999). Erosion caused by hyperconcentrated flow on the Loess Plateau of China. CATENA, 36(1-2), 1-19. doi:10.1016/s0341-8162(99)00009-

    From Pabst to Pepsi: The Deinstitutionalization of Social Practices and the Creation of Entrepreneurial Opportunities

    Full text link
    In this paper, we examine the dual role that social movement organizations can play in altering organizational landscapes by undermining existing organizations and creating opportunities for the growth of new types of organizations. Empirically, we investigate the impact of a variety of tactics employed by the Woman’s Christian Temperance Union (WCTU), the leading organizational representative of the American temperance movement, on two sets of organizations: breweries and soft drink producers. By delegitimating alcohol consumption, altering attitudes and beliefs about drinking, and promoting temperance legislation, the WCTU contributed to brewery failures. These social changes, in turn, created opportunities for entrepreneurs to found organizations producing new kinds of beverages by creating demand for alternative beverages, providing rationales for entrepreneurial action, and increasing the availability of necessary resources.Tolbert13_From_Pabst_to_Pepsi.pdf: 3878 downloads, before Oct. 1, 2020
    • 

    corecore