1,142 research outputs found

    Transition from a simple yield stress fluid to a thixotropic material

    Get PDF
    From MRI rheometry we show that a pure emulsion can be turned from a simple yield stress fluid to a thixotropic material by adding a small fraction of colloidal particles. The two fluids have the same behavior in the liquid regime but the loaded emulsion exhibits a critical shear rate below which no steady flows can be observed. For a stress below the yield stress, the pure emulsion abruptly stops flowing, whereas the viscosity of the loaded emulsion continuously increases in time, which leads to an apparent flow stoppage. This phenomenon can be very well represented by a model assuming a progressive increase of the number of droplet links via colloidal particles.Comment: Published in Physical Review E. http://pre.aps.org/abstract/PRE/v76/i5/e05140

    Rheopexy and tunable yield stress of carbon black suspensions

    Get PDF
    We show that besides simple or thixotropic yield stress fluids there exists a third class of yield stress fluids. This is illustrated through the rheological behavior of a carbon black suspension, which is shown to exhibit a viscosity bifurcation effect around a critical stress along with rheopectic trends, i.e., after a preshear at a given stress the fluid tends to accelerate when it is submitted to a lower stress. Viscosity bifurcation displays here original features: the yield stress and the critical shear rate depend on the previous flow history. The most spectacular property due to these specificities is that the material structure can be adjusted at will through an appropriate flow history. In particular it is possible to tune the material yield stress to arbitrary low values. A simple model assuming that the stress is the sum of one component due to structure deformation and one component due to hydrodynamic interactions predicts all rheological trends observed and appears to well represent quantitatively the data.Comment: submitted to Soft Matte

    Shear-induced sedimentation in yield stress fluids

    Get PDF
    Stability of coarse particles against gravity is an important issue in dense suspensions (fresh concrete, foodstuff, etc.). On the one hand, it is known that they are stable at rest when the interstitial paste has a high enough yield stress; on the other hand, it is not yet possible to predict if a given material will remain homogeneous during a flow. Using MRI techniques, we study the time evolution of the particle volume fraction during the flows in a Couette geometry of model density-mismatched suspensions of noncolloidal particles in yield stress fluids. We observe that shear induces sedimentation of the particles in all systems, which are stable at rest. The sedimentation velocity is observed to increase with increasing shear rate and particle diameter, and to decrease with increasing yield stress of the interstitial fluid. At low shear rate ('plastic regime'), we show that this phenomenon can be modelled by considering that the interstitial fluid behaves like a viscous fluid -- of viscosity equal to the apparent viscosity of the sheared fluid -- in the direction orthogonal to shear. The behavior at higher shear rates, when viscous effects start to be important, is also discussed. We finally study the dependence of the sedimentation velocity on the particle volume fraction, and show that its modelling requires estimating the local shear rate in the interstitial fluid

    The mechanics of yield stress fluids: similarities, specificities and open questions

    Get PDF
    A wide range of materials encountered in our everyday life, such as clay suspensions, foams, concentrated emulsions, cement pastes, paints, glues, purees, creams, can flow like simple liquids under certain conditions and behave like solids under other conditions. This is the specificity of yield stress fluids which makes them so useful in various applications. In their “liquid regime” these materials exhibit typical flow properties of simple fluids such as a transition to turbulence, the roll wave instability, the hydraulic jump, etc. The specific properties occur when the solid regime is involved, either in a part of the material or as a whole. In that case one may for example observe plug flow, flow stoppage over steep slopes, no sedimentation of dense particles, cylindrical drips, Saffman-Taylor instability at vanishing velocity, etc. In addition yield stress fluids are often thixotropic, i.e. their viscosity may vary in time. The physical origin of this phenomenon and the mechanical model appropriate for describing it remain the most challenging aspects of these fluids

    Flow of wet granular materials

    Get PDF
    The transition from frictional to lubricated flow of a dense suspension of non-Brownian particles is studied. The pertinent parameter characterizing this transition is the Leighton number Le=ηsγ˙σLe = \frac{\eta_s \dot{\gamma}}{\sigma}, which represents the ratio of lubrication to frictional forces. The Leighton number LeLe defines a critical shear rate below which no steady flow without localization exists. In the frictional regime the shear flow is localized. The lubricated regime is not simply viscous: the ratio of shear to normal stresses remains constant, as in the frictional regime; moreover the velocity profile has a single universal form in both frictional and lubricated regimes. Finally, a discrepancy between local and global measurements of viscosity is identified, which suggests inhomogeneity of the material under flow.Comment: Accepted for publication by Physical Review Letters (december 2004

    Motion of a sphere through an aging system

    Full text link
    We have investigated the drag on a sphere falling through a clay suspension that has a yield stress and exhibits rheological aging. The drag force increases with both speed and the rest time between preparation of the system and the start of the experiment, but there exists a nonzero minimum speed below which steady motion is not possible. We find that only a very thin layer of material around the sphere is fluidized when it moves, while the rest of suspension is deformed elastically. This is in marked contrast to what is found for yield-stress fluids that do not age.Comment: latex, 4 figure

    Fluid dynamic treatment of thixotropic debris flows and avalanches

    Get PDF
    Some forms of mud flows and debris flows exhibit a non-Newtonian thixotropic behaviour, and this study describes a basic study of dam break wave with thixotropic fluid. Theoretical considerations were developed based upon a kinematic wave approximation of the Saint-Venant equations down a prismatic sloping channel and combined with the thixotropic rheological model of Coussot et al. (2002). The analytical solution of basic flow motion and rheology equations predicts three basic flow regimes depending upon the fluid properties and flow conditions, including the initial degree of jamming of the fluid. The present work is the first theoretical analysis combining successfully the basic principles of unsteady flow motion with a thixotropic fluid model, which was verified with systematic laboratory experiments

    Drying of a model soil

    Get PDF
    International audienceDrying experiments have been carried out with model soils made of different pastes filling granular packings. A detailed information concerning the time evolution of the water density distribution inside the sample was obtained from MRI measurements. This study makes it possible to understand the physical origin of the drying characteristics of these materials. The drying curves exhibit a CRP (constant-rate period) and a FRP (falling-rate period) but the relative durations of these periods depend on the paste structure. With a kaolin suspension the CRP lasts down to very low water densities and is associated with a homogeneous drying of the paste throughout the sample. With a bentonite suspension the CRP is shorter and the drying in the FRP results from a complex process involving fractures progressing downwards through the pasty matrix. With a gel the CRP period is even shorter and the drying in the FRP results from the progression of a dry front through the packing as a result of the shrinkage of the gel matrix. This provides an overview of the main possible processes at work when drying a soil as a function of its components, along with some practical means for slowing down drying from soils

    On the existence of a simple yield stress fluid behavior

    Get PDF
    Materials such as foams, concentrated emulsions, dense suspensions or colloidal gels, are yield stress fluids. Their steady flow behavior, characterized by standard rheometric techniques, is usually modeled by a Herschel-Bulkley law. The emergence of techniques that allow the measurement of their local flow properties (velocity and volume fraction fields) has led to observe new complex behaviors. It was shown that many of these materials exhibit shear banding in a homogeneous shear stress field, which cannot be accounted for by the standard steady-state constitutive laws of simple yield stress fluids. In some cases, it was also observed that the velocity fields under various conditions cannot be modeled with a single constitutive law and that nonlocal models are needed to describe the flows. Doubt may then be cast on any macroscopic characterization of such systems, and one may wonder if any material behaves in some conditions as a Herschel-Bulkley material. In this paper, we address the question of the existence of a simple yield stress fluid behavior. We first review experimental results from the literature and we point out the main factors (physical properties, experimental procedure) at the origin of flow inhomogeneities and nonlocal effects. It leads us to propose a well-defined procedure to ensure that steady-state bulk properties of the materials are studied. We use this procedure to investigate yield stress fluid flows with MRI techniques. We focus on nonthixotropic dense suspensions of soft particles (foams, concentrated emulsions, Carbopol gels). We show that, as long as they are studied in a wide (as compared to the size of the material mesoscopic elements) gap geometry, these materials behave as 'simple yield stress fluids': they are homogeneous, they do not exhibit steady-state shear banding, and their steady flow behavior in simple shear can be modeled by a local continuous monotonic constitutive equation which accounts for flows in various conditions and matches the macroscopic response.Comment: Journal of Non-Newtonian Fluid Mechanics (2012) http://dx.doi.org/10.1016/j.jnnfm.2012.06.00

    Unified study of glass and jamming rheology in soft particle systems

    Full text link
    We explore numerically the shear rheology of soft repulsive particles at large volume fraction. The interplay between viscous dissipation and thermal motion results in multiple rheological regimes encompassing Newtonian, shear-thinning and yield stress regimes near the `colloidal' glass transition when thermal fluctuations are important, crossing over to qualitatively similar regimes near the `jamming' transition when dissipation dominates. In the crossover regime, glass and jamming sectors coexist and give complex flow curves. Although glass and jamming limits are characterized by similar macroscopic flow curves, we show that they occur over distinct time and stress scales and correspond to distinct microscopic dynamics. We propose a simple rheological model describing the glass to jamming crossover in the flow curves, and discuss the experimental implications of our results.Comment: 5 pages, 3 figs; v2 accepted to publication to Phys. Rev. Let
    corecore