27 research outputs found
Detection of pathogenic Bacteria by Electrochemical Impedance Spectroscopy: Influence of the immobilization strategies on the sensor performance
Electrochemical impedance spectroscopy (EIS) is applied to detect pathogenic E. coli O157:H7 bacteria via a label free immunoassay-based detection method. Polyclonal anti-E.coli antibodies (PAb) are immobilized onto gold electrodes following two different strategies, via chemical bond formation between antibody amino groups and a carboxylic acid containing self-assembled molecular monolayer (SAM) and alternatively by linking a biotinylated anti-E. coli to Neutravidin on a mixed-SAM. Impedance spectra for sensors of both designs for increasing concentrations of E. coli are recorded in phosphate buffered saline (PBS). The Nyquist plots can be modeled with a Randle equivalent circuit, identifying the charge transfer resistance RCT as the relevant concentration dependent parameter. Sensors fabricated from both designs are able to detect very low concentration of E. coli with limits of detection as low as 10-100 cfu/ml. The influence of the different immobilization protocols on the sensor performance is evaluated in terms of sensitivity, dynamic range and resistance against nonspecific absorption
Production of electrospun fast-dissolving drug delivery systems with therapeutic eutectic systems encapsulated in gelatin
Fast-dissolving delivery systems (FDDS) have received increasing attention in
the last years. Oral drug delivery is still the preferred route for the administration of
pharmaceutical ingredients. Nevertheless, some patients, e.g. children or elderly people, have
difficulties in swallowing solid tablets. In this work, gelatin membranes were produced by
electrospinning, containing an encapsulated therapeutic deep-eutectic solvent (THEDES)
composed by choline chloride/mandelic acid, in a 1:2 molar ratio. A gelatin solution (30% w/
v) with 2% (v/v) of THEDES was used to produce electrospun fibers and the experimental
parameters were optimized. Due to the high surface area of polymer fibers, this type of
construct has wide applicability. With no cytotoxicity effect, and showing a fast-dissolving
release profile in PBS, the gelatin fibers with encapsulated THEDES seem to have promising
applications in the development of new drug delivery systems.The research leading to these results has received
funding from Fundação para a Ciência e a Tecnologia
(FCT) through the projects ENIGMA - PTDC/EQU-EPR/
121491/2010 and UID/CTM/50025/2013, LAQVREQUIMTE:
UID/QUI/50006/2013, UCIBIO-REQUIMTE:
UID/Multi/04378/2013 (co-financed by the ERDF under the
PT2020 Partnership Agreement [POCI-01-0145-FEDER-
007728]) and by FEDER through the COMPETE 2020
Programme. Marta Martins is grateful for financial support
from FCT through the grant BIM/PTDC/EQUEPR/121491/
2010/ENIGMA. This research has also received funding from
the European Union Seventh Framework Programme (FP7/
2007-2013) under grant agreement number REGPOTCT2012-316331-POLARIS and from the project BNovel
smart and biomimetic materials for innovative regenerative medicine approaches^ RL1 - ABMR - NORTE-01-0124- FEDER-000016) co-financed by North Portugal Regional
Operational Programme (ON.2 – O Novo Norte), under the
National Strategic Reference Framework (NSRF), through
the European Regional Development Fund (ERDF).info:eu-repo/semantics/publishedVersio
TRIAGEM NEONATAL DE IMUNODEFICIĂŠNCIAS GRAVES COMBINADAS POR MEIO DE TRECS E KRECS: SEGUNDO ESTUDO PILOTO NO BRASIL
RESUMO Objetivo: Validar a quantificação de T-cell receptor excision circles (TRECs) e kappa-deleting recombination circles (KRECs) por reação em cadeia de polimerase (polymerase chain reaction, PCR) em tempo real (qRT-PCR), para triagem neonatal de imunodeficiĂŞncias primárias que cursam com defeitos nas cĂ©lulas T e/ou B no Brasil. MĂ©todos: Amostras de sangue de recĂ©m-nascidos (RN) e controles foram coletadas em papel-filtro. O DNA foi extraĂdo e os TRECs e KRECs foram quantificados por reação duplex de qRT-PCR. O valor de corte foi determinado pela análise de Receiver Operating Characteristics Curve, utilizando-se o programa Statistical Package for the Social Sciences (SSPS) (IBM®, Armonk, NY, EUA). Resultados: 6.881 amostras de RN foram analisadas quanto Ă concentração de TRECs e KRECs. Os valores de TRECs variaram entre 1 e 1.006 TRECs/µL, com mĂ©dia e mediana de 160 e 139 TRECs/µL, respectivamente. TrĂŞs amostras de pacientes diagnosticados com imunodeficiĂŞncia grave combinada (severe combined immunodeficiency, SCID) apresentaram valores de TRECs abaixo de 4/µL e um paciente com SĂndrome de DiGeorge apresentou TRECs indetectáveis. Os valores de KRECs encontraram-se entre 10 e 1.097 KRECs/µL, com mĂ©dia e mediana de 130 e 108 KRECs/µL, e quatro pacientes com diagnĂłstico de agamaglobulinemia tiveram resultados abaixo de 4 KRECs/µL. Os valores de corte encontrados foram 15 TRECs/µL e 14 KRECs/µL, e foram estabelecidos de acordo com a análise da Receiver Operating Characteristics Curve, com sensibilidade de 100% para detecção de SCID e agamaglobulinemia, respectivamente. Conclusões: A quantificação de TRECs e KRECs foi capaz de diagnosticar crianças com linfopenias T e/ou B em nosso estudo, validando a tĂ©cnica e dando o primeiro passo para a implementação da triagem neonatal em grande escala no Brasil
Testing a global standard for quantifying species recovery and assessing conservation impact
Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a “Green List of Species” (now the IUCN Green Status of Species). A draft Green Status framework for assessing species’ progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species’ viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species’ recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard
Testing a global standard for quantifying species recovery and assessing conservation impact.
Recognizing the imperative to evaluate species recovery and conservation impact, in 2012 the International Union for Conservation of Nature (IUCN) called for development of a "Green List of Species" (now the IUCN Green Status of Species). A draft Green Status framework for assessing species' progress toward recovery, published in 2018, proposed 2 separate but interlinked components: a standardized method (i.e., measurement against benchmarks of species' viability, functionality, and preimpact distribution) to determine current species recovery status (herein species recovery score) and application of that method to estimate past and potential future impacts of conservation based on 4 metrics (conservation legacy, conservation dependence, conservation gain, and recovery potential). We tested the framework with 181 species representing diverse taxa, life histories, biomes, and IUCN Red List categories (extinction risk). Based on the observed distribution of species' recovery scores, we propose the following species recovery categories: fully recovered, slightly depleted, moderately depleted, largely depleted, critically depleted, extinct in the wild, and indeterminate. Fifty-nine percent of tested species were considered largely or critically depleted. Although there was a negative relationship between extinction risk and species recovery score, variation was considerable. Some species in lower risk categories were assessed as farther from recovery than those at higher risk. This emphasizes that species recovery is conceptually different from extinction risk and reinforces the utility of the IUCN Green Status of Species to more fully understand species conservation status. Although extinction risk did not predict conservation legacy, conservation dependence, or conservation gain, it was positively correlated with recovery potential. Only 1.7% of tested species were categorized as zero across all 4 of these conservation impact metrics, indicating that conservation has, or will, play a role in improving or maintaining species status for the vast majority of these species. Based on our results, we devised an updated assessment framework that introduces the option of using a dynamic baseline to assess future impacts of conservation over the short term to avoid misleading results which were generated in a small number of cases, and redefines short term as 10 years to better align with conservation planning. These changes are reflected in the IUCN Green Status of Species Standard