216 research outputs found

    Adjustments to the reference dataset design improve cell type label transfer

    Get PDF
    The transfer of cell type labels from pre-annotated (reference) to newly collected data is an important task in single-cell data analysis. As the number of publicly available annotated datasets which can be used as reference, as well as the number of computational methods for cell type label transfer are constantly growing, rationals to understand and decide which reference design and which method to use for a particular query dataset are needed. Using detailed data visualisations and interpretable statistical assessments, we benchmark a set of popular cell type annotation methods, test their performance on different cell types and study the effects of the design of reference data (e.g., cell sampling criteria, inclusion of multiple datasets in one reference, gene set selection) on the reliability of predictions. Our results highlight the need for further improvements in label transfer methods, as well as preparation of high-quality pre-annotated reference data of adequate sampling from all cell types of interest, for more reliable annotation of new datasets

    Depictive and Metric Body Size Estimation in Anorexia Nervosa and Bulimia Nervosa: A Systematic Review and Meta-Analysis.

    Get PDF
    A distorted representation of one's own body is a diagnostic criterion and core psychopathology of both anorexia nervosa (AN) and bulimia nervosa (BN). Despite recent technical advances in research, it is still unknown whether this body image disturbance is characterized by body dissatisfaction and a low ideal weight and/or includes a distorted perception or processing of body size. In this article, we provide an update and meta-analysis of 42 articles summarizing measures and results for body size estimation (BSE) from 926 individuals with AN, 536 individuals with BN and 1920 controls. We replicate findings that individuals with AN and BN overestimate their body size as compared to controls (ES= 0.63). Our meta-regression shows that metric methods (BSE by direct or indirect spatial measures) yield larger effect sizes than depictive methods (BSE by evaluating distorted pictures), and that effect sizes are larger for patients with BN than for patients with AN. To interpret these results, we suggest a revised theoretical framework for BSE that accounts for differences between depictive and metric BSE methods regarding the underlying body representations (conceptual vs. perceptual, implicit vs. explicit). We also discuss clinical implications and argue for the importance of multimethod approaches to investigate body image disturbance

    How Does Variation in the Body Composition of Both Stimuli and Participant Modulate Self-Estimates of Men’s Body Size?

    Get PDF
    When measured in units of body mass index (BMI), how much variation in men’s self-estimates of body size is caused by i) variation in participants’ body composition and ii) variation in the apparent muscle mass and muscle tone of the stimuli being judged? To address this, we generated nine sets of male CGI bodies representing low, mid, and high muscle mass rendered at low, mid, and high muscle tone, from 18.75 to 40 BMI-hse units. BMI-hse units in this study are estimates of BMI derived from calibration equations predicting BMI from waist and hip circumference, age, sex, height, and ethnicity in the Health Survey for England databases. Forty-five healthy adult men estimated their body size using a yes-no paradigm for each combination of muscle mass/tone. We also measured participants’ body composition with Harpenden callipers and their body concerns with psychometric questionnaires. We show that stimulus variation in apparent muscle mass/tone can introduce differences up to ∼2.5 BMI-hse units in men’s self-estimates of body size. Moreover, men with the same actual BMI, but different body composition, showed up to ∼5-7 BMI-hse unit differences in self-estimates of body size. In the face of such large errors, we advocate that such judgments in men should be made instead by simultaneously manipulating both the adiposity and the muscle mass of stimuli which are appropriately calibrated for body composition, so that the participant can match the body size and shape they believe themselves to have to the stimulus they see

    Beyond BMI for self-estimates of body size and shape: A new method for developing stimuli correctly calibrated for body composition

    Get PDF
    Accurate self-assessment of body shape and size plays a key role in the prevention, diagnosis, and treatment of both obesity and eating disorders. These chronic conditions cause significant health problems, reduced quality of life, and represent a major problem for health services. Variation in body shape depends on two aspects of composition: adiposity and muscularity. However, most self-assessment tools are unidimensional. They depict variation in adiposity only, typically quantified by the body mass index. This can lead to substantial, and clinically meaningful, errors in estimates of body shape and size. To solve this problem, we detail a method of creating biometrically valid body stimuli. We obtained high-resolution 3D body shape scans and composition measures from 397 volunteers (aged 18–45 years) and produced a statistical mapping between the two. This allowed us to create 3D computer-generated models of bodies, correctly calibrated for body composition (i.e., muscularity and adiposity). We show how these stimuli, whose shape changes are based on change in composition in two dimensions, can be used to match the body size and shape participants believe themselves to have, to the stimulus they see. We also show how multivariate multiple regression can be used to model shape change predicted by these 2D outcomes, so that participants’ choices can be explained by their measured body composition together with other psychometric variables. Together, this approach should substantially improve the accuracy and precision with which self-assessments of body size and shape can be made in obese individuals and those suffering from eating disorders

    Perceptual Not Attitudinal Factors Predict the Accuracy of Estimating Other Women’s Bodies in Both Women With Anorexia Nervosa and Controls

    Get PDF
    Disturbance in how one’s body shape and size is experienced, usually including overestimation of one’s own body size, is a core feature of the diagnostic criteria of anorexia nervosa (AN). Is this over-estimation specific to women with AN’s judgments of their own body? Or is it just a general feature of their judgments about all bodies? If the latter, it would be consistent with a general error in the perception of body size potentially linked to the use of a different set of visual cues for judging body size. If the former, then this suggests that the over-estimation of own body size has a strong attitudinal component and may be part of the psycho-pathology of their condition. To test this hypothesis, 20 women with AN and 80 control observers estimated the body size of 46 women. The results show a strong effect of perceptual factors in estimating body size for both controls and women with AN. This result is consistent with size over-estimation of own body in AN having a strong attitudinal basis and being a core feature of the psycho-pathology of the condition

    Self and body part localization in virtual reality: comparing a headset and a large-screen immersive display

    Get PDF
    It is currently not fully understood where people precisely locate themselves in their bodies, particularly in virtual reality. To investigate this, we asked participants to point directly at themselves and to several of their body parts with a virtual pointer, in two virtual reality (VR) setups, a VR headset and a large-screen immersive display (LSID). There was a difference in distance error in pointing to body parts depending on VR setup. Participants pointed relatively accurately to many of their body parts (i.e. eyes, nose, chin, shoulders and waist). However, in both VR setups when pointing to the feet and the knees they pointed too low, and for the top of the head too high (to larger extents in the VR headset). Taking these distortions into account, the locations found for pointing to self were considered in terms of perceived bodies, based on where the participants had pointed to their body parts in the two VR setups. Pointing to self in terms of the perceived body was mostly to the face, the upper followed by the lower, as well as some to the torso regions. There was no significant overall effect of VR condition for pointing to self in terms of the perceived body (but there was a significant effect of VR if only the physical body (as measured) was considered). In a paper-and-pencil task outside of VR, performed by pointing on a picture of a simple body outline (body template task), participants pointed most to the upper torso. Possible explanations for the differences between pointing to self in the VR setups and the body template task are discussed. The main finding of this study is that the VR setup influences where people point to their body parts, but not to themselves, when perceived and not physical body parts are considered

    Distortions of perceived volume and length of body parts

    Get PDF
    We experience our body as a 3D, volumetric object in the world. Measures of our conscious body image, in contrast, have investigated the perception of body size along one or two dimensions at a time. There is, thus, a discrepancy between existing methods for measuring body image and our subjective experience of having 3D body. Here we assessed in a sample of healthy adults the perception of body size in terms of its 1D length and 3D volume. Participants were randomly assigned to two groups using different measuring units (other body part and non-body object). They estimated how many units would fit in a perceived size of body segments and the whole body. The patterns of length and volume misperception across judged segments were determined as their perceived size proportional to their actual size. The pattern of volume misperception paints the representation of 3D body proportions resembling those of a somatosensory homunculus. The body parts with a smaller actual surface area relative to their volume were underestimated more. There was a tendency for body parts underestimated in volume to be overestimated in length. Perceived body proportions thus changed as a function of judgement type while showing a similarity in magnitude of the absolute estimation error, be it an underestimation of volume or overestimation of length. The main contribution of this study is assessing the body image as a 3D body representation, and thus extending beyond the conventional ‘allocentric’ focus to include the body on the inside. Our findings highlight the value of studying the perceptual distortions “at the baseline”, i.e. in healthy population, so as to advance the understanding of the nature of perceptual distortions in clinical conditions

    As light as your scent: effects of smell and sound on body image perception

    Get PDF
    How people mentally represent their body appearance (i.e., body image perception - BIP) does not always match their actual body. BIP distortions can lead to a detriment in physical and emotional health. Recent works in HCI have shown that technology can be used to change people’s BIP through visual, tactile, proprioceptive, and auditory stimulation. This paper investigates, for the first time, the effect of olfactory stimuli, by looking at a possible enhancement of a known auditory effect on BIP.We present two studies building on emerging knowledge in the field of crossmodal correspondences. First, we explored the correspondences between scents and body shapes. Then, we investigated the impact of combined scents and sounds on one’s own BIP. Our results show that scent stimuli can be used to make participants feel lighter or heavier (i.e., using lemon or vanilla) and to enhance the effect of sound on perceived body lightness. We discuss how these findings can inform future research and design directions to overcome body misperception and create novel augmented and embodied experiences
    corecore