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The transfer of cell type labels from pre-annotated (reference) to newly
collected data is an important task in single-cell data analysis. As the
number of publicly available annotated datasets which can be used as
reference, as well as the number of computational methods for cell type
label transfer are constantly growing, rationals to understand and decide
which reference design and which method to use for a particular query
dataset are needed. Using detailed data visualisations and interpretable
statistical assessments, we benchmark a set of popular cell type annotation
methods, test their performance on different cell types and study the effects of
the design of reference data (e.g., cell sampling criteria, inclusion of multiple
datasets in one reference, gene set selection) on the reliability of predictions.
Our results highlight the need for further improvements in label transfer
methods, as well as preparation of high-quality pre-annotated reference
data of adequate sampling from all cell types of interest, for more reliable
annotation of new datasets.
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1 Introduction

Identification of cell types is an essential part of the analysis of single-cell RNA-seq data, and
provides thorough summarizing of the data in light of already existing biological context for the
known cell types. Yet, often this is not a straight-forward part of processing and careful cell type
annotation is a time consuming process. Recently, more attention has been devoted to the
development ofmethods for transfer of cell type labels from previously annotated datasets to newly
acquired data. Several label transfer approaches have been proposed, based on different models
such as correlation between the cell states [e.g., Seurat (Stuart et al., 2019), SingleR (Aran et al.,
2019), CellID (Cortal et al., 2021)], random forest [e.g., SingleCellNet (Tan and Cahan, 2019)], or
deep learning [e.g., ItClust (Hu et al., 2020), SignacX (Chamberlain et al., 2021)]. Existing methods
often perform well in predicting cell types of distinct clusters, while cell types without a clear
boundary between them (in continuous developmental trajectories, closely related immune cell
types, etc.) are more difficult to identify. Reliable annotation of rare cell types is also an important
challenge and implies that the prediction quality per cell type needs to be assessed rather than
reporting only overall statistics whichmiss any indication onwhere (andwhy) the prediction errors
take place.

Here, we use reference and query scRNA-seq datasets from Peripheral Blood
Mononuclear Cells (PBMC) samples (Ding et al., 2020) to benchmark five popular label
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transfer methods and show that the design of the reference dataset
should be adapted to the learning approach used by the method. We
use reference and query datasets which are complete in respect to
each other, meaning that all the cell types in the query are present in
the reference and vice versa. First, we examine the effects of reference
data sampling (i.e., number of cells per cell type) on each method.
Using a balance training set is standard in the machine learning field
(Kotsiantis et al., 2005) but has mostly been neglected for cell type
annotation. Consequently, we implement a weighed bootstrapping-
based approach to make use of as much of the reference data as
possible, while still keeping the benefits of working with reference
data subsets in which cell types are not under-represented. A
bootstrapping strategy to deal with low sample numbers in the
reference data has been previously used in SignacX (Chamberlain
et al., 2021) as well, which offers an ensemble neural networks model
pre-trained on the Human Primary Cell Atlas (HPCA) (Mabbott
et al., 2013) (for classification of immune cell types). We further
show the effect of using reference data from various sources on the
different methods, and that a careful selection of the gene set is
crucial for the quality of label predictions for high-dimensional and

noisy scRNA-seq data. Moreover, we closely examine the
implications of confidence scores provided by the different
methods and demonstrate that high confidence scores do not
directly correlate with correct predictions.

2 Results

2.1 Less abundant as well as closely related
cell types are more difficult to predict

We evaluate the methods on a PBMC dataset, with manually
curated cell type labels (Figure 1A). We start by using the entire
reference data without any adjustments. Comparing each method’s
predictions to the ground truth, we get similar F1 scores for Seurat,
SingleR and SingleCellNet and significantly worse performances for
CellID and ItClust (Figure 1B). Comparing the ground truth with the
annotation from each method, we see that the predictions vary
between the different methods, even for methods with similar
performances (Figures 1C, D). In general the mispredictions are

FIGURE 1
Cell type label transfer on the PBMC dataset using the full reference dataset. (A) UMAP of the query cells colored based on the cell types assigned in
the ground truth. (B) Over all F1 scores achieved for each of the methods. (C) UMAPs colored by the cell type annotation made with the different
annotation methods. (D)UMAPs showing by if a cell was correct or incorrect predicted. (E) F1 scores achieved for the different cell types with each of the
different methods. The cell types are listed in decreasing order of how often they are represented in the full reference data.
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located in areas of the Uniform Manifold Approximation and
Projection (UMAP) (McInnes et al., 2018) where cell types
overlap. Taking for example, the area where the two rare cell types
of Dendritic cells andMegakaryocytes overlap in the ground truth, we
see different predictions with each method. Seurat extends the B cell
cluster that lies below, while SingleCellNet predicts a mixture of
different cell types in that area. SingleR on the other hand predicts the
Dendritic cells in a much wider radius then the ground truth. This
shows, that even though these three methods have similar overall
F1 scores the prediction for specific populations can vary greatly. This
variation is highlighted by the cell type specific accuracy and precision
values for each method (Supplementary Figure S1). All methods
perform worse for rare cell types as reflected in decrease of
F1 scores (Figure 1E). Accounting for such limitations in
prediction of less abundant cell types, ItClust even excludes them

from modelling, thus does not predict any cells as either Dendritic
cells or Megacaryocytes, thereby completely mispredicting all cells
belonging to those populations in the query dataset.

2.2 Less abundant cell types benefit from
more balanced reference data

Since rare cell types are more difficult to predict, we asses how a
more balanced reference dataset can affect the predictions.We compare
the accuracy of the predictions for each cell type (three example cell
types in Figure 2A and the remaining cell types in Supplementary
Figure S2) as a function of the maximum number of cells sampled per
cell type in the reference dataset. On the one hand, increasing the
number of maximum cells per cell type higher than the number of cells

FIGURE 2
Effect of the number of cells per cell type on the predictions. Accuracy (A) and precision (B) for three example cell types in each method, when the
number of cells per cell type is increased. The red dashed line shows the accuracy on the full data and the grey dashed line shows the number of cells in
this cell type in the full reference data. Confidence intervals for 20 bootstraps are shown by a grey shadow.
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available in a cell type leads to a decrease of accuracy for this cell type.
This impairment is especially drastic for ItClust where smaller cell types
start to be missed completely. CellID is the only method where
increasing the number of cells per cell type to more than
1,000 leads to visible improvements. For the other methods even
cell types where more data is available are not better predicted after
increasing the reference data size beyond a certain threshold. This
indicates that limiting the number of cells per cell type to a
maximum of 1,000 cells is generally beneficial. On the other
hand, including too few cells per cell type has negative effects
on the predictions, especially for abundant cell types. When
comparing the precision of the predictions as a function of the
maximum number of cells per cell type (three example cell types in
Figure 2B and the remaining cell types in Supplementary Figure
S3) we see that higher accuracy usually comes at the cost of lower
precision for each cell type. However, overall the quality of the

predictions for each cell type as summarize by F1 scores
(Supplementary Figure S4), depends on how well they are
represented in the reference data. As a rule of thumb, each cell
type tends to be predicted best when the maximum number of cells
per cell type is closest to the number of cells available for this cell
type. At this point the cell type is best represented without being
overshadowed by other more abundant cell types.

2.3 Weighted bootstrapping increases the
accuracy in the prediction of less abundant
cell types

We implement a weighted bootstrapping-based approach, that
allows us to account for the variable abundances of different cell types
in the reference data (Methods 4.4 and Figure 3A). We select subsets

FIGURE 3
Using weighted bootstrapping for the predictions. (A)Overview of the weighted bootstrapping approach. (1) Sampling of the reference dataset with
each subset responding to the size of one of the cell types present in the full reference. (2) Cell type label transfer with one of the existing approaches. (3)
Adding weights to the annotations based on howwell represented the cell type is in the corresponding reference set. (4) Predicting the cell type for which
the sum of predictions is the highest. (B) UMAP colored by the difference between the mean accuracy achieved when using the bootstrapping-
based approach versus the one achieved on the individual reference subsets. (C)Distribution of the F1 scorers for the individual reference subsets shown
as boxplots (see Methods). The black points represents the result achieved on the full reference set.
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where the maximum number of cells per cell type align with the
abundance of one of the cell types in the reference. The predictions
made on each of these subsets is then weighted based on how close the
abundance of the predicted cell type is to themaximumnumber of cells
in this subset. This approach allows us to use as much of the data as
possible, while still weighting the prediction of cell types higher when
they are better represented in the reference data subset. Figure 3B
shows how well each cell is predicted across 20 bootstrapping sets. We
observe that the most uncertain prediction areas by bootstrapping
generally mirror the results of using the full data shown Figure 1D.
With bootstrapping, the absolute value of accuracy increases for all
smaller cell types but their precision tends to decrease (Supplementary
Figure S5), especially visible for Seurat and SingleCellNet. Nevertheless,
the F1 scores indicate that the benefits in the accuracy outweigh the
difficulties in the precision (Figure 3C). SingleR is not much affected by
the bootstrapping, neither positive nor negative. ItClust and CellID
perform better for all cell types with bootstrapping. ItClust no longer
misses any of the cell types completely.

We further assess the performance of the pre-trained SignacX
immune cell types labeling tool on the PBMC data, which uses
bootstrapping on the HPCA data as the reference for the training of
the model. The performance of SignacX is comparable to SingleR,
Seurat and SingleCellNet for most cell types (Figure 4). The
reference data of SignacX does not contain any Megakaryocytes
and therefore misses predicting them completely.

2.4 Including data from multiple sources
allows more balanced coverage of all cell
types

With the increasing number of annotated datasets, it becomes
possible to combine multiple existing datasets into the reference. To
simulate this we extended our reference with cells from other

sequencing technologies and repeated the annotation using the
bootstrapping approach. The UMAPs colored by the difference
in accuracy for each cell when using a mosaic-reference set
compared to a mono-source reference set, show that most cells
have a similar performance for both sets and that changes mostly
occur in difficult areas for each method (Figure 5A). Accuracies for
Seurat increase in some areas while decreasing in others, while
SingleCellNet accuracies mostly increase by using mosaic reference
data. Precision values also differ only slightly between mono-source
and mosaic reference data (Supplementary Figure S6). Taking a look
at the cell type specific F1 scores (Figure 5B), we conclude the use of
mosaic data does not introduce significant batch effect artifacts to
the predictions, thus can be helpful for more balanced
representation for all cell types in the reference set.

2.5 Selection of the gene set affects the
methods differently

In this section, we show that the selection of genes included in
the data also affects the learning models and thus the label transfer
process. In the previous sections we used a set of 1,000 highly
variable genes (HVGs) for the predictions, as most single-cell RNA-
seq analysis pipelines use roughly a similar number of top HVGs. To
test whether using a different amount of genes would affect the
predictions by the different methods, we reran all the methods with
200 and 2000 HVGs. In Figure 6 we show the F1 scores achieved
when using 200, 1,000 or 2000 HVGs. While the gene set affects the
performance, the results differ significantly between the different
methods. Seurat and SingleCellNet (which have their own inner
procedures of feature selection, i.e., by data compression and
random forest respectively, see Methods) perform less well when
using 200 HVGs but increasing the number of HVGs from 1,000 to
2000 does not lead to further improvements. For SingleR the

FIGURE 4
Comparing SignacX to the other methods The figure shows the (A) F1 score, (B) accuracy and (C) precision of the individual methods reached on the
full PBMC reference dataset compared to the results achieved by SignacX on the pre-trained model for immune cell type prediction on the Human
Primary Cell Atlas (HPCA) reference dataset.
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abundant cell types benefit from a low number of HVGs, while the
less abundant cell types are better predicted with more HVGs.
CellID shows the biggest difference in accuracy and prediction
depending on HVG selection and performs significantly better
with 200 HVGs. The improvement for CellID is mostly in

accuracy, except for the Dendritic cells which get better in the
precision (Supplementary Figure S7). The Megakaryocytes remain
over-predicted independent of the number of genes. ItClust includes
internal (hard-coded) filtering of the gene set, and was therefore
excluded for the analysis in this section.

FIGURE 5
Using mosaic reference data versus the mono-source reference. (A) UMAP colored by the mean accuracy achieved on the mosaic references
subtracted by the mean accuracy achieved on the mono-source references when using the weighted bootstrapping approach (B) Distribution of the
F1 scores for themosaic (colored boxplots, seeMethods) for the weighted bootstrapping-based approach. The initial performance on the full reference is
shown as a comparison (black dot).

FIGURE 6
Comparing predictions based on different gene sets Cell type specific F1 scores achieved with the different gene sets for each of the methods. The
1,000 and 2000 genes sets yield better predictions than the 200 genes set for most methods and cell types.
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As an additional test, we use the Triana et al. (2021) bone
marrow dataset with 560 manually curated genes (with known
biological relevance) to annotate a second healthy human bone
marrow dataset sequenced in the same study, using the weighted
bootstrapping approach (Supplementary Figure S8). ItClust benefits
significantly from the bootstrapping for all cell types and
SingleCellNet performs better for rare cell types. However, other
methods show no improvements using the bootstrapping approach
and perform even less well for some cell types. We anticipate this
happens because the curated set of genes reliefs the model training
for these methods, therefore the less abundant cell types are
adequately modeled even without bootstrapping This indicates
that the careful selection of the gene set can compensate for an
unbalanced reference dataset.

2.6 High confidence scores do not always
align with correct predictions

Four of the five methods of interest supply a confidence score for
the predicted cell type. In Figure 7A; Supplementary Figure S9 we show
the confidence scores of each the method separated in true and false
predictions. While Seurat shows a clear difference in distribution of
confidence scores, for true and false predictions for many cell types,

there are cell types where this difference is rather small, such as the
Cytotoxic T cells and the natural killer cells. For less abundant cell types
such as the Dendritic cells and the Plasmacytoid dendritic cells, the true
predictions have generally a higher confidence than the false
predictions, for smaller numbers of cells per cell type. But with an
increase in the number of cells, Seurat starts to become even more
confident in the false predictions, making the confidence scores less
helpful. This implies, the method does not model the rare cell types
correctly and only becomes more confident in a false model for them
when provided larger number of cells which make the data more
imbalanced. The confidence scores supplied by SingleR show
significantly higher confidence for correct predictions in the rare cell
types (non-overlapping error bars for correct and false predictions
indicate a significant difference between them), but no clear difference
between the two distributions for other cell types e.g., Cytotoxic T cells.
This implies a good modeling of rare cell types, but again not a good
model for cell types with mixing boundaries. Similarly, for
SingleCellNet the confidence in the correct predictions is generally
(but not for all cell types) higher than the one in false predictions, which
is good. For ItClust, the confidence scores appear as rather random and
uninformative. The (partial) discordance we observe between
confidence scores and correctness of predictions across the methods
is not surprising, as the confidence score reflects the variation in
prediction for a query cell given a model; when the model is wrong

FIGURE 7
Confidence scores and runtime. (A) Boxplots (see Methods) of confidence-scores for the predicted cell types depending of true and false
predictions of each of the methods providing confidence scores for four example cell types. The star signs indicate significant (p-value < 0.05, see
Methods) difference between the False and True predictions. (B) runtime in seconds on a CentOS7 cluster with a memory limit of 16G on one core with
8CPU available.
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(or not good enough), it can make wrong predictions quite confidently.
CellID does not provide confidence scores, so it was excluded for the
analysis in this section.

2.7 Reporting the runtimes

In addition to the prediction quality of the different methods we
checked their runtime (Figure 7B), which revealed that the runtime
of all methods increases linearly or slower with the number of cells in
the reference. In all trials the number of input genes (1,000) as well as
the query data was fixed. Seurat and SingleR are the two most
computationally efficient methods.

3 Discussion

In this work we benchmarked five popular label transfer
methods on PBMC datasets and showed how the selection and
treatment of the reference data affects the quality of the prediction.
We demonstrated the effects of data sampling in the reference and
showed that all methods tend to predict highly represented cell types
better than rare cell types. We found that reducing the reference data
to balance the cell types improves the ability to predict less abundant
cell types. However, disregarding too many cells to match the
number of available cells for every cell type results in lower
accuracy of abundant cell types. Overall methods that include an
explicit modelling step (different kinds of data compression, deep
learning, etc.) benefit from more balanced reference sets, in contrast
to methods that rely only on cell states’ correlations such as SingleR.
To make a sensible compromise between data balancedness and
utilization, we implemented a weighted bootstrapping method that
includes the predictions of multiple different sized and more
balanced subsets. This approach generally improves the
predictions for ItClust and CellID. The other methods do not
show a change in the F1 scores, but the accuracy of predicting
the rare cell types increases. This indicates that depending on the
research question and the importance of finding less represented cell
types, more balanced reference sets and the weighted bootstrapping
can be beneficial for these methods as well. Prior to our study,
bootstrapping to enhance the statistical power for prediction of rare
cell types has also been used in SignacX. While their bootstrapping
approach was implemented for training their (neural network)
model on a specific bulk reference dataset, we show that
bootstrapping can be beneficial for other label transfer methods
and model settings, as well.

As the number of available annotated datasets is growing, one
can consider combining multiple datasets as a potential for
increasing the statistical power for making more accurate
predictions, especially for less abundant cell types. However,
other factors such as technical differences and batch effects
between the datasets could introduce new causes for
mispredictions. We combined datasets from multiple sources
(without batch correction) as one reference and evaluated how
this affected the labels transfer. We found in general, mosaic data
does not weaken the overall performance for any method. Thus,
especially in cases where combining multiple reference datasets
would allow identification of additional cell types, we would

suggest to do so. Also in rare cell types, such as the Plasmacytoid
dendritic cells for which the minimum number of cells is increased
from 38 in the mono-source to 102 in the mosaic data, additional
data appears beneficial.

When determining distances between different cell states in
high-dimensional space, we often face the challenge of the curse of
dimensionality (Imoto et al., 2022). The higher the number of
dimensions, the more severe the issue, as noise
disproportionately adds up to undermine the true (biological)
signal when considering multiple dimensions. Because of this,
one could expect that reducing the number of dimensions helps
with better defining cell similarities (and distances), thus improving
the predictions. Previous studies (Schraivogel et al., 2020; Triana
et al., 2021) have indicated that a curated set of genes with known
biological relevance facilitates reliable cell type label identification
for the bone marrow tissue, even at very low reads depth. However,
such prior knowledge may not be at hand for the data analyst.
Without using prior knowledge, we compared performances
between gene sets of different sizes on the PBMC data and
showed that the number of included HVGs alone is not
determinant of the predictions quality. In fact using different
gene sets affected different cell types and methods differently.

Furthermore, we demonstrated that confidence scores provided
by different methods, cannot be taken as an absolute measure for
correctness of predictions, but rather they show the robustness of
prediction for a query cell assuming the model used by the method is
correct. Correlation between the confidence scores and correct
predictions (when ground truth labels are available) would
indicate the reliability of a model. Overall, SingleR showed one of
the most robust and reliable performances in our benchmarking
experiments using PBMC reference and query datasets that were
complete with respect to each other. Seurat and SingleCellNet’s
performances were also generally good and competing with SingleR,
but we assessed CellID and ItClust as not being very robust and
reliable. However, one could expect the performances to be different
for other data scenarios, which thus need to be further tested, e.g.,
scenarios in which one or a few cell types are exclusively present in
either the query or the reference set, or when much bigger reference
data is available. In our study, none of the available methods were
able to make highly accurate predictions for all cell types even with
careful design of the reference. In all cases at least one of the cell
types has an accuracy below 0.5 even if other cell types reach
accuracy values close to 1. This could be due to inadequate
performance of the methods, but also to incorrectly labeled cells
in the reference and query data that we assume as ground truth. The
annotations assumed as ground truth in this study have been
attained in the original publication Ding et al. (2020) using
standard single-cells data clustering and annotation algorithms,
which may include errors. As Figure 1 indicates, annotation
errors tend to happen more along the boundaries between closely
related cell types (e.g., in continual developmental trajectories). The
definition of these boundaries diverges in different annotations,
which makes some degree of error in such regions inevitable.

To conclude, our study highlights the need for further
improvement of cell type label transfer methods as well as better
reference data quality (i.e., original cell types annotation by
clustering, etc.) and design acquisition, as two major bottlenecks
that require simultaneous attention and refinement for improving

Frontiers in Bioinformatics frontiersin.org08

Mölbert and Haghverdi 10.3389/fbinf.2023.1150099

https://www.frontiersin.org/journals/bioinformatics
https://www.frontiersin.org
https://doi.org/10.3389/fbinf.2023.1150099


state-of-the-art reliability of labels transferred to new data. With
restriction to the existing methods and data, we showed that
predictions of different methods can be improved by a careful
design and assembly of the reference dataset. In particular, this
design needs to be adapted to the method used.

4 Materials and methods

4.1 Data and code availability

We performed our analysis on publicly available human PBMC
cell (Ding et al., 2020) data (Table 1, Gene Expression Omnibus
accession number: GSE132044). The data has been annotated in the
original publication, which we use as the ground truth cell labels.
This annotation was done based on assigning cell type labels to non-
overlapping clusters created using the Louvain community detection
algorithm on the scRNA-seq dataset. Manually curated marker
genes for each cell type were used to assign a cell type to each
cluster. A more detailed description of the annotation process and
the list of marker genes can be found in the original publication of
the data.

To strengthen our claims we repeat part of the analysis on
human bone marrow data published by Triana et al. (2021). In their
study they published multiple human bone marrow datasets, here
we use the one containing bone marrow from healthy young and old
donors (https://doi.org/10.6084/m9.figshare.13397651.v2) as
reference and a cells from young healthy donor (https://doi.org/
10.6084/m9.figshare.13397987.v3) as query (Table 2). Since the
reference dataset was sequenced on a targeted gene set, we will
use the 560 curated genes in the cell type label transfer.

The code for reproducing the results and figures in this study is
available on GitHub (https://github.com/HaghverdiLab/
CelltypeLabelTransfer).

4.2 Preprocessing

The PBMC data in (Ding et al., 2020) contains two annotated
experiments run on different days. Both experiments contain
samples from all scRNA-seq platforms. In Sections 2.1, –Section
2.3 and Section 2.4–Section 2.7 we use exclusively the cells in
“experiment one” which were gathered on the 10X platform as
our reference data, which we refer to as the mono-source reference.
In Section 2.4 we combine the 10X data with all the other scRNA-seq
platforms (i.e., Smart-Seq, CEL-Seq2, 10X, Drop-Seq, Seq-Well,
inDrops) from the same experiment into one reference, which we
refer to as the mosaic reference. We combine the different sets
without applying any batch corrections. We use experiment two as
query data. The query and the reference data contain the same 9 cell
types (Cytotoxic T cell, CD4+ T cell, CD14+ monocyte, B cell,
Megakaryocyte, Natural killer cell, CD16+ monocyte, Dendritic
cell, Plasmacytoid dendritic cell).

In order to make the different label transfer methods
comparable, we use the same data preprocessing workflow for all
methods as far as possible. The preprocessing of the gene expression
count data starts with selecting the top 1,000 (200 or 2,000 HVGs)
using the Pearson residuals method (Lause et al., 2021). We then do
a log transformation of the highly variable genes (HVGs) read
counts followed by cell-wise L2 normalization. To allow the log
transform on the expression matrix, we add a small value (0.001) to
the expression values in order to avoid zero values. However, these
preprocessing steps could not be used for ItClust, for which the
preprocessing steps are hard-coded in the package and cannot be
changed. Minor adjustments to the preprocessing workflow to meet
each method’s requirements are described in its corresponding
Methods section.

4.3 Reference data permutation and
confidence intervals

To analyze the importance of reference data selection, we assess
the different methods, using subsets of the initial reference data of
varying size. We vary the maximum numbers of cells per cell type
(38, 100, 250, 500, 1,000, 1,500, 2,000, 3,000). We note that if a cell
type has less then the maximum number of cell types the reference
data will be unbalanced. For each of the reference set sizes,

TABLE 1 Description of the PBMC datasets included in this study.

Dataset No. Cells No. Genes No. Classes Protocol

PBMC Query 11,183 33,658 9 Smart-Seq2, CEL-Seq2, 10X, Drop-Seq, Seq-Well, inDrops

PBMC 10X 9,666 33,658 9 10X

PBMC CEL-Seq 253 33,658 7 CEL-Seq2

PBMC Drop-Seq 3,222 33,658 9 Drop-Seq

PBMC inDrops 3,222 33,658 7 inDrops

PBMC Seq-Well 3,176 33,658 7 Seq-Well

PBMC SMART 253 33,658 6 Smart-Seq2

TABLE 2 Description of bone marrow datasets included in this study.

Dataset No. cells No. genes No. classes Protocol

BM Query 13,165 560 13 CITEseq

BM Reference 49,057 560 14 CITEseq
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20 random permutations were sampled from the underlying
reference data.

4.4 Weighted bootstrap-annotation of cell
types

We implement a weighted bootstrap-annotation approach, to
assign a weight to the predictions, based on how the predicted label
is represented in the full reference. Each query cell i gets assigned a
label li,j for each reference set rj:

w li,j, rj( ) � 1

n li,j( ) −max rj( )
∣∣∣∣∣

∣∣∣∣∣ + 1( )
(1)

Where n(li,j) is the number if cells annotated with label li,j in the
full reference data and max(rj) is the maximum number of cells per
cell type in reference set rj. For each cell type the different weights are
added up and the cell type with the highest weight is predicted. Here,
we select a subset for each cell type in the reference data with the
maximum number of cells per cell type being the number of cells for
this cell type in the full reference.

4.5 Specification of the boxplots

In all boxplots in the figures of this manuscript, the box fills the
interquartile range (IQR)between the 25th (Q1) and the 75th (Q2)
percentile and the line through the box shows the median of the
distribution. The lines extending from the box show the minimum
(Q1 − 1.5*IQR) and maximum (Q3 + 1.5*IQR) value in the data.
Values outside of this range are plotted as individual points and are
considered potential outliers.

4.6 Seurat

We follow the Seurat label transfer workflow as suggested in the
“Mapping and annotating query datasets” vignette. The Seurat
algorithm consists of two steps. The first is an unsupervised
compression of the reference and query data into a common
space that captures the most correlated features between the two
datasets, by using Canonical Correlation Analysis (CCA). This step
implies that the query data distribution (as well as the reference data)
affects the data compression model which is used in the next step for
label transfer. In the second step, the most common label among the
set of mutual nearest neighbors (MNN) of a query cell (Haghverdi
et al., 2018) in the reference set is transferred to it as the predicted
label. We use version v4.2.0 of the Seurat R package.

4.7 SingleR

SingleR uses an iterative approach to transfer cell type labels
from prior annotated reference data to an unannotated query
dataset. The annotation process is performed individually for
each query cell. First the variable genes among the cell types in
the reference set are selected. Secondly, the Spearman correlation

between the query cell and each cell in the reference is calculated.
The correlation values are aggregated by cell type and the cell type
with the lowest correlation value and all cell types with a correlation
more then 0.05 smaller then the top value are removed. The steps are
then repeated until only 2 cell types remain and the cell type with the
higher correlation is predicted. We use version v2.0.0 of the SingleR
R package.

4.8 CellID

CellID uses Multiple Correspondence Analysis (MCA) for data
compression (unsupervised step) as well as to identify per-cell gene
signatures. The signatures of the reference and query data are then
compared using a hypergeometric test. The label of the closest cell in
the reference is then transferred to the corresponding query cell.
Gene set selection is part of the CellID workflow, therefore instead of
initially selecting 200 HVGs, we select the top 5,000 HVGs and use
CellID’s specific gene set selection method to reduce the number of
genes to 200. We note that this gene set varies from the one used by
the other methods. We use version v1.6.0 of the CellID R package.

4.9 SingleCellNet

SingleCellNet is a random forest based approach, that transforms
the data into a cell-by-cell binary matrix derived by pairwise
comparison of selected genes (Top-Pair transformation). The
workflow starts with reducing each cell type to a fixed number of
cells (default: 100 cells). Here, we skip this step. This is followed by
training the model. We use the default settings. The labels are
transferred to the query data, based on the random forest classifier.
SingleCellNet allows to set a number of random profiles to the
evaluation process, which allows to identify if cells might belong to
a cell type not represented in the reference data. We treat these cells as
false predictions.We use version v0.4.1 of the SingleCellNet R package.

4.10 ItClust

ItClust is an iterative transfer learning approach for clustering
and cell annotation. The neural network model is trained in two
steps. It starts with supervised learning on the reference data
followed by an additional learning step on the query data to fine-
tune the parameters. We use ItClust with its default settings, which
includes a gene set selection and a filtering of reference and query
cells. We treat removed query cells as false predictions. Since ItClust
includes its own preprocessing steps, we did not apply our
preprocessing workflow. We use version v1.2.0 of the ItClust
python package.

4.11 SignacX

SignacX is an R package of a neural network model trained on
bulk flow-sorted RNA-seq data of immune cell types from the
Human Primary Cell Atlas (HPCA) (Mabbott et al., 2013). To
deal with low sample numbers for some of the cell types,
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SignacX performs a bootstrapping on the HPCA reference data to
train an ensemble of n = 100 neural network classifiers. The pre-
trained SignacX model has been shown to be able to identify
immune cell types across a variety of diseases, tissues and
sequencing technologies (Chamberlain et al., 2021).
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