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Abstract
Accurate self-assessment of body shape and size plays a key role in the prevention, diagnosis, and treatment of both obesity and
eating disorders. These chronic conditions cause significant health problems, reduced quality of life, and represent a major
problem for health services. Variation in body shape depends on two aspects of composition: adiposity and muscularity.
However, most self-assessment tools are unidimensional. They depict variation in adiposity only, typically quantified by the
body mass index. This can lead to substantial, and clinically meaningful, errors in estimates of body shape and size. To solve this
problem, we detail a method of creating biometrically valid body stimuli. We obtained high-resolution 3D body shape scans and
composition measures from 397 volunteers (aged 18–45 years) and produced a statistical mapping between the two. This allowed
us to create 3D computer-generated models of bodies, correctly calibrated for body composition (i.e., muscularity and adiposity).
We show how these stimuli, whose shape changes are based on change in composition in two dimensions, can be used to match
the body size and shape participants believe themselves to have, to the stimulus they see.We also show howmultivariate multiple
regression can be used to model shape change predicted by these 2D outcomes, so that participants’ choices can be explained by
their measured body composition together with other psychometric variables. Together, this approach should substantially
improve the accuracy and precision with which self-assessments of body size and shape can be made in obese individuals and
those suffering from eating disorders.

Keywords Body image . Body shape . Bodymass index . Body composition .Muscle content . Adiposity

Introduction

The accurate perception and indexing of body adiposity,
whether it is too low or too high, is a vital health prevention
and management goal. There has been an inexorable world-
wide rise in obesity with a concomitant pressure on public
health resources (Ogden et al. 2006; Swinburn et al., 2011).
At least 2.1 billion people (30% of the global population) are
thought to be overweight or obese, and 5% of deaths world-
wide can be directly attributed to obesity (Dobbs et al., 2014;

Tremmel, Gerdtham, Nillson, & Saha, 2017). Obesity can
take up to 8 years off a person’s life expectancy and causes
decades of ill health (Grover et al., 2014). Additionally, obe-
sity costs the world economy at least $2.0 trillion or 2.8% of
the global domestic product (Dobbs et al., 2014). A potential
contributory factor to the rise in obesity is the failure of people
to recognise weight gain. If we, or our health services, cannot
accurately index body size, then the appropriate compensatory
behaviours which might reduce weight will not be undertaken
(Robinson, Parretti, & Aveyard, 2014).

Furthermore, inaccurate perception of body size is a key
feature of anorexia and bulimia nervosa for both men and
women (e.g., Dakanalis et al., 2015; Fairburn, Cooper, Doll,
& Welch, 1999; Lavender, Brown, & Murray, 2017;
Mitchison & Mond, 2015; Rosen, 1997). It has even been
suggested that anorexia nervosa be renamed as a body image
disorder (Phillipou, Castle, & Rossell, 2018). In the UK alone,
the different forms of eating disorders affect at least 600,000
people and cost the UK economy £15 billion each year in
treatment, reduced productivity, and reduced earning
(BEAT, 2015). Body size overestimation is one of the most
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persistent of all the symptoms in anorexia and bulimia
nervosa, predicting onset of weight-loss behaviours, and its
severity predicts treatment outcomes and relapse rates (Castro,
Gila, Puig, Rodriguez, & Toro, 2004; Freeman, Thomas,
Solyom, & Koopman, 1985; Junne et al., 2019; Liechty,
2010). Thus, the ability to provide an accurate index of a
patient’s body size perception and provide feedback on the
accuracy of this judgement is a key aspect of treatment
(Gledhill et al., 2017; Irvine et al., 2020).

However, existing assessment tools fail to accurately cap-
ture how bodies vary in size and shape. They make the false
assumption that body mass index (BMI) is an accurate index
of body fat, and on this basis attempt to simulate BMI change
in a sequence of bodies (Gardner & Brown, 2010). The prob-
lem here is that body shape change is predicted by variation
along two features of body composition (adiposity and mus-
cularity) and not one (Sturman, Stephen, Mond, Stevenson, &
Brooks, 2017). Indeed, the relationship between body compo-
sition and BMI represents a clear example of Simpson’s par-
adox, as shown in Fig. 1. This illustrates how plots of muscle
mass as a function of body fat are positively correlated across
any reasonably large sample of men or women. However, if
the data sets are subdivided into narrow ranges of BMI, then
the direction of the relationship between muscle and fat mass
inverts and becomes negative. It is for exactly this reason that
individuals can have the same BMI but different body com-
position (i.e., higher muscle mass with lower body fat, or vice
versa), and therefore different body shapes (Mullie, Vansant,
Hulens, Clarys, & Degrave, 2008; Yajnik & Yudkin, 2004).
As a result, BMI is an inaccurate measure of body composi-
tion and misallocates people into the wrong risk categories for
health risks and weight-related disease (e.g., Okorodudu et al.,
2010). Additionally, the mismatch of size and shape between
BMI and actual body composition introduces a significant
error in the choice of which body in a sequence of bodies
varying in BMI corresponds to a participant’s own body.
This error may be as high as 5–7 BMI units (Groves et al.,
2019), again significantly shifting the chosen body across the
World Health Organization BMI categories for health risk
(WHO, 2018).

To solve this problem and accurately represent the varia-
tion that exists in body size and shape, it is necessary to com-
bine body composition measurements with 3D body shape
scanning techniques in a large sample of volunteers. Such a
data set can then be used to determine the statistical mapping
between 3D body shape change as a function of muscle mass
and adiposity independently, and these statistical models
could be used in turn to create appropriately calibrated 3D
computer-generated models of bodies.

Here, we report (i) the collection of a new data set combin-
ing 3D body shape scans together with bioelectrical-
impedance measures of body composition; (ii) a novel analy-
sis of these two data sets which allows a calibrated mapping

between 3D body shape, muscle mass, and fat mass to gener-
ate computer-generated imagery (CGI) stimuli; (iii) the pro-
posal of a new 2D method of adjustment task which allows
participants to select a body size/shape they believe them-
selves to have, or would like to have, expressed as body com-
position (i.e., a 2D outcome variable comprising both muscle
and fat mass); (iv) the presentation of a new analysis pipeline,
illustrated with toy data sets, in which multivariate regression
is used to map the measured body composition of the observer
onto the body composition derived from our method of ad-
justment task.

Fig. 1 The top row (a) shows a simulation of the relationship between
muscle mass and fat mass in 500 men. The red line is the ordinary least
squares (OLS) regression of muscle mass on fat mass across the whole
sample. The bottom row (b) shows a plot of the same data partitioned into
five equally sized subgroups of 100 individuals, based on the BMI ranges
15–19 (wine), 19–23 (orange), 23–27 (green), 27–31 (cyan), and 31–35
(blue). The red lines are the OLS regression of muscle mass on fat calcu-
lated separately for each subgroup. To create this illustration, the covari-
ance values for the relationships between BMI, fat mass, andmuscle mass
were taken from Groves et al. (2019)
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Methods

3D body shape database collection

Participants

Ethical permission was granted by the School of Psychology
Research Ethics Committee (SOPREC) at the University of
Lincoln (approval code PSY1718350). A total of 560 adults
aged 18–74 years were recruited from staff and students at the
University of Lincoln and the general population in and
around Lincoln. We have only included data from Caucasian
adults aged 18–45 in this particular analysis, as the pattern of
fat deposition varies in different racial and age groups
(Gallagher et al. 1996; Misra & Khurana, 2011; Wells, Cole,
Brunner, & Treleaven, 2008). The final sample (n = 397)
comprised 176 men (Mage = 28.84, SD = 7.99) and 221 wom-
en (Mage = 29.14, SD = 8.18). No screening for eating disor-
ders was carried out, so it is possible that some participants
had an eating disorder but none of them identified themselves
as such. Table 1 summarises the participants’ anthropometric
and body composition measurements, and Table 2 summa-
rises the BMI category distribution of the sample, separately
for men and women.

Equipment

3dMD scannerHigh-resolution, colour, 3D body scans of each
participant were obtained using a 3dMD anthropometric sur-
face imaging system. The 360° full-body scanner incorporates
nine modular camera units, which are distributed around a
circle approximately 4 m in diameter, with equal spacing be-
tween modules. The participant to be scanned stands in the
middle of this circle. Each unit contains two monochromatic
cameras and one speckle projector for capturing body geom-
etry, and one colour camera capturing body texture. The
speckle cameras automatically projected a standard light pat-
tern onto the body when the mono cameras were capturing an
image, while light-emitting diode panels were turned on when
the colour camera was capturing an image. The scanner was
set up to capture seven frames per second, with a total of 20

seconds required for each 3D body scan. The output from the
3dMD system included a 3D full-body polygon surface mesh
with X, Y, and Z coordinates, as well as a mapped surface
texture. Geometric accuracy for this system is approximately
0.5 mm or below (3dMD, 2019).

Tanita body composition analyser Body composition mea-
surements were obtained using a Tanita MC-780MA multi-
frequency segmental body composition analyser. This device
uses eight-electrode bioelectrical impedance analysis (BIA) to
send a weak, undetectable electrical current through the body
to estimate a person’s body composition using a high-
frequency current (50 kHz, 90 μa). The scale outputs total
body measurements of body fat, skeletal muscle, visceral fat
rating, water content, bone mass, BMI, and basal metabolic
rate. Separate body fat and muscle (mass and percentage)
estimations for individual segments of the body, including
the central trunk, right arm, right leg, left arm, and left leg,
are also outputted. The outputs of the device are calibrated for
the sex, age, and height of the individual being measured, with
this information being entered by the operator. The results
obtained with the Tanita bio-electrical impedance analysis
have been shown to be within ±5% of underwater weighing
and dual-energy X-ray absorptiometry (DEXA), the ‘gold’
standards of body composition analysis) (Völgyi et al. 2008;
Sillanpää et al., 2014).

Table 1 Participant anthropometric and body composition measurements for men and women

Women (n = 221) Men (n = 176)

Min. Max. Mean SD Min. Max. Mean SD

Height (cm) 141.50 181.00 164.63 6.29 165.00 198.50 179.41 6.80

Fat (kg) 4.20 52.90 17.65 7.92 2.50 46.00 14.53 7.39

Skeletal muscle (kg) 18.90 35.10 26.34 2.79 28.40 61.60 39.55 5.61

BMI 16.69 38.05 23.82 4.19 16.19 38.74 25.35 3.79

Table 2 The number and proportion of men and women in each BMI
category

Women (n = 221) Men (n = 176)

BMI category Frequency Percent Frequency Percent

Underweight 8 3.60 5 2.80

Normal weight 151 68.30 85 48.30

Overweight 41 18.60 66 37.50

Obese 21 9.50 20 11.40

Note. The BMI categories reported here are according to the World
Health Organization definitions: underweight < 18.50 kg/m2 , normal
weight 18.50–24.99 kg/m2 , overweight 25.00–29.99 kg/m2 , and obese
> 30.00 kg/m2
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Procedure Participants were first scanned using the 3dMD
body scanner. During the 20 s scan, participants were asked
to stand in the centre of the space around which the cameras
were distributed, with their feet shoulder-width apart. To cap-
ture a range of arm positions, participants were asked to slow-
ly raise their arms to shoulder level with their hands in a fist.
Participants were provided with tight-fitting, grey underwear
in a range of sizes to ensure that body shape was not disguised
by clothing. Men were asked to wear boxer-style shorts while
women wore a sports bra and shorts (see Fig. 2). Next, stand-
ing height was measured (to the nearest centimetre) using a
stadiometer after participants were instructed to stand up
straight and face forward. Lastly, body composition measure-
ments were taken using the Tanita body composition analyser.
This process lasted approximately 20 minutes.

Scan processingA suitable frame from each 20-second scan
was selected using 3dMD software prior to processing of
the scans. This frame was chosen to depict the individual
standing with their arms away from the body in an ‘A-
pose’. The 3D scans were then processed using Wrap3
software (version 3.3.17, Russian3DScanner, 2018) in or-
der to repair any missing segments and remove any non-
manifold topology or irrelevant components from each
scan. A template base mesh was wrapped around the indi-
vidual scans by matching 36 preselected points (manually

located) on corresponding landmarks of both the 3D scan
and template model (see Fig. 2). This resulted in all scans
having a standardised topology, allowing for statistical
comparisons to be made whilst maintaining individual var-
iation in body size and shape. Polygon selection was used
to exclude the hands of each scan from wrapping, as this
feature was not relevant to the data analysis. Each proc-
essed scan consisted of 79,522 vertices.

Body composition reliability and validity Bioelectrical im-
pedance analysis (BIA) is a relatively inexpensive,
easy-to-use, and quick method for estimating body com-
position which is less prone to technical error than other
methods, making it a suitable tool for large-scale studies
(Lee & Gallagher, 2008). Multiple studies have found
BIA to be a valid tool for estimating body fat in adults.
This technique shows good agreement compared to dual-
energy X-ray absorptiometry (e.g. Ling et al., 2011; Sun
et al., 2005; Wattanapenpaiboon, Lukito, Strauss, Hsu-
Hage, Wahlqvist, & Stroud, 1998) and skinfold calliper
measurements (Kitano, Kitano, Inomoto, & Futatsuka,
2001). Furthermore, BIA shows good test–rest reliability
(Aandstad, Holtberget, Hageberg, Holme, & Anderssen,
2014; Jackson, Pollock, Graves, & Mahar, 1988). Here,
we report reliability and validity data for the body com-
position measurements taken in this sample.

Fig. 2 The top row (a) presents two female and two male 3D body scans prior to Wrap 3 processing. The bottom row (b) shows the template base mesh
with 36 preselected landmarks

Behav Res



Validation of body fat measurements from BIA To validate
body fat measurements taken from the BIA in this sample,
skinfold measurements were taken by a Level 2
In t e rna t i ona l Soc i e ty fo r t he Advancemen t o f
Kinanthropometry (ISAK) practitioner for a subset of partici-
pants (26 men and 22 women) using standard ISAK tech-
niques (Stewart, Marfell-Jones, Olds, & De Ridder, 2011).
Skinfold measurements were taken from eight skinfold
sites—tricep, bicep, subscapular, iliac crest, supraspinale, ab-
dominal, medial calf, and front thigh—using skinfold callipers
(Harpenden, HaB, UK). The mean of two measurements was
used unless values differed by ≥ 5%, whereupon a further
skinfold measure was taken, and the median value was used.
The following four-site skinfold equations (Jackson &
Pollock, 1985) were then used to estimate percentage body
fat, based on the abdominal, tricep, front thigh, and iliac crest
skinfolds:

Men : 0:29288� sum of skinfoldsð Þ− 0:0005� square of the sum of skinfoldsð Þ
þ 0:15845� ageð Þ−5:76377

Women : 0:29669� sum of skinfoldsð Þ− 0:00043� square of the sum of skinfoldsð Þ
þ 0:02963� ageð Þ þ 1:4072

Estimates of total fat mass were also calculated based on
participants’ total body weight and their estimated percentage
body fat from the Jackson and Pollock (1985) equations.

Pearson’s correlations were used to explore the relationship
between fat estimates taken from the calliper method (body fat
percentage and fat mass in kilograms) and BIA (body fat
percentage and body fat mass in kilograms), separately for
men and women. The results shown in Table 3 indicate that
the body fat values derived from the callipers and BIA were
significantly, positively correlated for both samples of men
and women.

The body fat percentage estimates from the calliper
(Mwomen = 22.15, SD = 4.59; Mmale = 14.55, SD = 5.04) and
BIA (Mwomen = 23.42, SD = 5.03; Mmale = 15.16, SD = 3.81)
were not significantly different, for both men t(25) = −0.87, p
= .395 and women t(21) = −1.78, p = .090. This good agree-
ment is illustrated by the Altman-Bland plots between BIA
and calliper estimates in Fig. 3, and is consistent with previous

studies (see e.g., Kitano et al., 2001; Wattanapenpaiboon
et al., 1998).

BIA intra-individual reliability To assess the reliability of the
BIA, repeat measurements were taken from a subset of partic-
ipants (9 women; MBMI = 21.88, SD = 2.09) during the same
sessions in which they took part. A Pearson’s correlation was
calculated in order to investigate the relationships between
body composition variables (fat mass, fat percentage, muscle
mass, and fat-free mass) at the two time points. All body
composition values at T1 and T2 were significantly, positively

Table 3 Correlations between BIA and calliper estimates of fat mass and percentage for men and women

Women (n = 22) Men (n = 26)

Calliper body fat % Calliper fat mass Calliper fat % Calliper fat mass

BIA fat % 0.76*** 0.77*** 0.71*** 0.76***

BIA fat mass 0.80*** 0.89*** 0.60*** 0.74***

***p < .001

Fig. 3 Bland-Altman plots of the differences between BIA and calliper
estimates of percentage body fat. The mean difference is −0.61 and −1.27
for men and women, respectively. The limits of agreement are denoted by
the upper and lower solid lines representing the 95% CIs
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correlated (r > .99, p < .001). Comparison between the mea-
surements at both time points demonstrated excellent agree-
ment, with the intraclass correlation coefficient (ICC) for each
variable being greater than .99 (p < .001).

Mapping 3D body shape onto body composition

Body shape

Using customised MATLAB software, we excluded the 3D
coordinates associated with points referring to the head, neck,
hands, and feet in the processed scans. The remaining 26,665
coordinates described the legs, arms, and torso. The average
3D shape for the set was then calculated, and all individual
shapes were subsequently fitted to this average using
Procrustes analysis in order to minimise idiosyncratic differ-
ences in body position. It is important to note that only trans-
lation and orthogonal rotation were utilised in order to pre-
serve those aspects of shape change related to scaling (i.e.,
size).

Next, each individual shape was converted to a vector of
79,995 numbers (26,665 points × 3 coordinates), with these
vectors entered into a principal component analysis (PCA).
The resulting subspace comprised c − 1 dimensions, where c
is the number of identities. For each dimension in the subspace
separately, we carried out a linear regression. All identities’
measures of fat mass (FATM) and skeletal muscle mass
(SMM) taken from BIA were used to predict their locations
along that specific dimension, with the values of the two co-
efficients and the constant subsequently allowing us to model
shape change. It was not important to consider whether these
regressions were statistically significant, since each simply

described the relationship between the two body measures
and shape for a given subspace dimension—if no relationship
existed, then the coefficients would be small, and their effect
on shape change in the model would reflect this. Using the
results of these regressions, we were therefore able to predict
locations along all subspace dimensions for any given pair of
FATM and SMM values. For the specific location identified
in multidimensional space, the 3D shape could then be recon-
structed and visualised (see Fig. 4).

Given that our model of shape change was derived from a
specific database of 3D scans (representing typical population
values of both FATM and SMM), we chose to only consider
and discuss our predictive model within the limits of the actual
values of our sample. In other words, we did not explore how
body shape might vary outside of the lowest and highest
values that were measured in our identities (see Fig. 5).

Comparing our model to predictions based on BMI

For bodies within our sample, we investigated how well the
model was able to predict body shape in comparison with
BMI. To do this, we utilised a ‘leave-one-out’ strategy in order
to determine how novel test shapes could be predicted from a
sample of training shapes. We cycled through each identity,
removing their 3D scan from the sample and using the remain-
ing identities’ scans in the ‘PCA + regressions’ model of
shape change described above. In addition to our FATM/
SMM model, we separately modelled shape change using
the BMI values of our identities. (As above, training identities’
measures of BMI were used to predict their locations along
each PCA dimension, with the values of the coefficient and
the constant allowing us to model shape change.)

Fig. 4 The visualisation tool allows body shape to be predicted for a given pair of FATM and SMM values. The top row shows the average female body
shape and the bottom row shows the average male body
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The excluded identity’s scan was then compared with the
predicted 3D shape for that identity based on their measures of
FATM and SMM, and separately, the predicted 3D shape
based on their measure of BMI. In order to quantify error
when comparing these predicted shapes with the original
scans, we calculated the ‘straight line’ distance in 3D space
between every original point and its predicted location, sub-
sequently averaging these distances across all points. Here, we
considered only the 12,697 points representing the torso,
which allowed us to remove prediction errors inherent in the
arms and legs as a result of their positioning. (While standard
instructions were given to participants during scanning, no
constraints were placed on the locations of the feet and hands
in the resulting scans.)

For every identity, we therefore calculated this measure
of error when predicting 3D shape (excluded from the sam-
ple used in deriving the models) from FATM and SMM,
and separately, from BMI. For our male sample, a paired-
samples t test comparing these two measures of error con-
firmed that our FATM/SMM model (M = 1.71, SD = 0.49)
performed better than the BMI model (M = 1.83, SD =
0.56), t(175) = 5.83, p < .001, Cohen’s d = 0.44. This result
was also found for our female sample (FATM/SMM model
−M = 1.59, SD = 0.51; BMI model −M = 1.71, SD = 0.57),
t(220) = 5.18, p < .001, Cohen’s d = 0.35. In other words,
for both men and women, we were better able to predict 3D

shape using a model incorporating FATM and SMM in
comparison with one based on BMI.

Figures 6 and 7 illustrate this result by displaying the errors
in shape prediction for two specific identities (a woman and a
man, respectively), comparing the predicted 3D shapes of the
two models beside each other. In order to generate these dis-
plays, we found the maximum error for all points across both
models for the identity featured, and then converted prediction
errors for each point to be a proportion of this maximum.

Fig. 5 Visualisations of male (left) and female (right) predicted body shape at the highest, middle, and lowest values of FATM and SMM for our sample

Fig. 6 Displaying prediction errors for an example female identity’s 3D
shape. Errors for the FATM/SMM (left) and BMI (right) models are
shown, with warmer-coloured points representing larger errors in predic-
tion for this shape
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(Across all identities: average female maximum error, M =
4.36 cm, SD = 2.76 cm; average male maximum error, M =
4.29 cm, SD = 1.11 cm.) As such, increasingly warm-coloured
points in the figures represent larger errors on the same scale.
For the examples illustrated in Figs. 6 and 7, the larger errors
for the BMI model (displayed on the right-hand side in both
figures) appear to be concentrated, for the most part, in the
upper torso. As can be seen, the errors for the BMI model are
greater for the male example, reflecting the greater variation in
fat and muscle in men which the unidimensional BMI model
cannot accurately capture.

Predicting individual changes

Above, we described our model of shape change based on
FATM and SMM, and how this was able to predict body
shape for a given pair of values. However, this modelling
process can also be used to predict how a given individual’s
body shape would change with an increase or decrease in fat
and muscle values. We simply generate the model for FATM/
SMM described above (PCA + regressions) and then apply
the predicted changes to shape that are associated with a
change in these two measures. Rather than visualising these
shifts along the various principal components in terms of the
average body shape (above), our starting point in the multidi-
mensional space is the individual’s shape itself. As such, pre-
dicted shape changes are applied to a specific person, enabling
data-driven predictions regarding how an individual might
vary (see Figs. 8 and 9).

Behavioural task

In order to obtain judgements of body size/shape from partic-
ipants, we will use the method of adjustment. The task will be
designed so that the fat and muscle mass of a CGI model
stimulus presented on a PC monitor can be manipulated
smoothly, in real time. Using two sets of arrow buttons on

the screen, participants will be able to systematically change
the fat and muscle mass of the stimulus. On each trial in the
task, the CGI model will be assigned an arbitrary fat and
muscle mass combination as a start point. The job of the par-
ticipant will be to modify the CGI model so as to best capture
the body size/shape that they believe themselves to have, if
making self-estimates of body size, or would like to have, if
making estimates of ideal body size/shape. Once the partici-
pant is satisfied with their choice of body composition on each
trial, they will press a response button which will allow the
muscle and fat mass combination for that trial to be recorded,
and a new trial initiated.

According to classical psychophysics (Gescheider, 1997),
the mean of the muscle and fat mass values, respectively, will
represent an estimate of the point of subjective equality (PSE)
for the body composition that the participant believes they

Fig. 9 Predicting shape change for a specific man. The original 3D scan
(left; FATM = 7.0 kg, SMM = 29.9 kg), and how the man’s shape is
predicted to change if he doubled his SMM (right)

Fig. 8. Predicting shape change for a specific woman. The original 3D
scan (left; FATM = 26.6 kg, SMM = 32.7 kg), and how the woman’s
shape is predicted to change if she halved her FATM (right)

Fig. 7 Displaying prediction errors for an example male identity’s 3D
shape. Errors for the FATM/SMM (left) and BMI (right) models are
shown, with warmer-coloured points representing larger errors in predic-
tion for this shape
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have, or would like to have (depending on task instruction).
Moreover, the standard deviations of these means represent
the difference limen (DL), a measure of task sensitivity or
precision. Figure 10 shows a Monte Carlo simulation to esti-
mate the variability in DL estimates as a function of the num-
ber of trials in the method of adjustment task. The simulation
was run for target DL values of 0.5, 1.0, and 2.0. These were
to be estimated from tasks comprising 5, 10, 20, 30, 40, 50,
60, 70, 80, and 90 trials. Each data point in Fig. 10 is derived
from 10,000 resamples. It shows an elbow region around 20–
60 trials per participant, suggesting that around this number
should be sufficient to obtain stable estimates of DL.

Behavioural data analysis

The Pearson correlations between measured fat mass and
muscle mass in the men and women who agreed to be 3D
body scanned were r = 0.45, p < .001, and r = 0.38, p <
.001, respectively. This means that the fat and muscle mass
values obtained from the estimates of body composition, in
the method of adjustment task, are also highly likely to be
correlated. If they were not correlated, then we could model
the fat and muscle components of participants’ responses
using separate multiple regression models. Here, we assume
this is unlikely to be the case. Therefore, to map the relation-
ships between the body composition that participants actually
have versus the body composition they think they have (or
would like to have), we will need to use multivariate
regression.

The standard multivariate linear model can be written as Y
= XB + E. Y is an n × r matrix of r response variables mea-
sured on n subjects; X is an n × p matrix of explanatory vari-
ables; B is a p × rmatrix of regression coefficients; and E is an
n × r ‘error’ matrix whose rows are independent and

identically normally distributed with mean 0 and covariance
matrix Σ. Below is a simple example with two responses and
one explanatory variable (in addition to an intercept term)
measured on three subjects.

Y11 Y21
Y12 Y22
Y13 Y23
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β11 β12

� �

þ
ε11 ε21
ε12 ε22
ε13 ε23

0
@
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Here we used PROC MIXED in SAS (v9.4) to implement
two multivariate regressions of toy data sets intended to rep-
resent the kinds of responses we might expect from body
composition estimates using the 2D method of adjustment
task (see also Wright, 1998). In both cases, we have as ex-
planatory variables: (i) participants’ measured fat mass, (ii)
participants’ measured skeletal muscle mass, and (iii) a psy-
chometric covariate related to participants’ attitudes and be-
haviours about muscularity. To simulate the two outcome var-
iables from the method of adjustment task in men, i.e., esti-
mated muscle mass and estimated fat mass, we assume a co-
variance between the two measured participant muscle and fat
masses of 0.45, and covariances between the psychometric
covariate and measured fat and muscle masses of 0 and 0,
respectively.

The first scenario is one in which male participants were
asked to estimate their own body composition. In this simula-
tion, we assumed that they overestimated both their fat and
muscle masses by, on average, 1 unit (see Table 4 for
summary of parameter values).We also allowed an additional,
statistically independent contribution to the muscle mass esti-
mate from the psychometric task: higher scores on this task
were associated with higher estimates of muscle mass. In the
second scenario, male participants were asked to estimate their
ideal body composition. For this simulation, we assumed that
participants’ psychometric performance was unrelated to their
responses, and that all participants tended to converge on a
common ideal with low body fat and high muscle mass. The
individual simulation parameters, their estimates derived from
multivariate regression, and the overall multivariate analysis
of variance (MANOVA) statistics are shown in Table 4. In
addition, these results are plotted in Fig. 11.

Discussion

A fundamental problem with previous sets of images used to
test judgements of body size and shape is biometric validity.
That is to say, the size and shape of the bodies used are a poor
fit to the actual physical characteristics of the bodies they are
intended to represent. Part of this problem is the reliance on

Fig. 10 Plots of the variability in DL estimates as a function of the
number of trials in the method of adjustment task
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trying to represent body shape as predicted by BMI. In reality,
as illustrated in Fig. 1, bodies with the same BMI may have
very different body composition, and this is reflected in dif-
ferent body shapes and sizes. Therefore, any body size/shape
estimation task that relies on participants matching their be-
liefs (or desires) against stimuli calibrated only for BMI is
bound to be error-prone (see Groves et al., 2019). Attempts
have been made to address this issue by constructing body
scales which systematically vary combinations of muscle
mass and adiposity (e.g., Cafri & Thompson, 2004; Talbot,
Smith, Cass, & Griffiths, 2019). However, these assessment
tools do not provide a calibrated mapping between the size
and shape of the test bodies and their composition. As a result,
they cannot be used to reliably assess the perception of body
shape and size (Groves et al., 2019). To directly address this
problem, we are developing a new assessment tool for body
size/shape estimation. In this task, we ask participants, effec-
tively, to identify the body composition they think they have
(or would like to have) using CGI stimuli correctly calibrated
for both muscle and fat mass.

To create this assessment tool, we have collected mea-
sures from 176 men and 221 women who consented to
have both their 3D body shape and body composition mea-
sured. This allowed the construction of a statistical model

that maps 3D shape onto composition, and we demonstrate
how multivariate regression can then be used to analyse
what is now a 2D outcome variable. Further development
work to refine the test is needed. This includes expanding
the range of body shapes in the anthropometric database.
Specifically, we need to sample from the edges of the body
muscle/fat space, i.e., men and women who have (i) both
very low muscle and fat mass, (ii) very low fat and very
high muscle mass, and (iii) very high fat and low muscle
mass. We also need to develop models of body shape
change for people of non-European origin. The pattern of
fat deposition varies in different racial groups (Misra &
Khurana, 2011; Wells, Cole, Brunner, & Treleaven,
2008). For example, people of Asian and South Asian de-
scent seem to have a higher level of fat to muscle ratio for a
particular BMI, and are more likely to deposit visceral
rather than subcutaneous fat on the body, resulting in dif-
ferent cut-offs for a healthy BMI (Shiwaku, Anuurad,
Enkhmaa, Kitajima, & Yamane, 2004; WHO Expert
Consultation, 2004). This difference in body composition
and pattern of fat deposition underlines the need for sepa-
rate databases and statistical models for different racial
groups to accurately represent how body size and shape
vary with changing adiposity or muscularity.

Table 4 Comparison between simulation and modelled parameters

Self-estimate of body size/shape

Outcome variable Explanatory variable Simulation parameter Modelled parameter Wilks’ lambda p

Estimated fat Intercept
Ppt Fat
Ppt Muscle
Psych

1
1
0
0

1.0065
1.0073
−0.023
0.0023

<.001
<.001
.19
.88

Estimated muscle Intercept
Ppt Fat
Ppt Muscle
Psych

1
0
1
0.5

0.96
0.016
0.96
0.51

<.001
.36
<.001
<.001

MANOVA Ppt Fat
Ppt Muscle
Psych

0.23
0.24
0.47

<.001
<.001
<.001

Ideal estimate of body size/shape

Outcome variable Explanatory variable Simulation parameter Modelled parameter Wilks’ lambda p

Estimated fat Intercept
Ppt Fat
Ppt Muscle
Psych

−2.5
0.1
0
0

−2.49
0.11
−0.023
0.0023

<.001
<.001
.19
.88

Estimated muscle Intercept
Ppt Fat
Ppt Muscle
Psych

2.5
0
0.1
0

2.46
0.016
0.056
0.015

<.001
.36
.001
.34

MANOVA Ppt Fat
Ppt Muscle
Psych

0.96
0.99
0.99

<.001
.002
.63

Note. Ppt Fat = measured fat mass of participant; Ppt Muscle = measured muscle mass of participant; Psych = psychometric covariate reflecting attitudes
and behaviours around muscularity
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In the introduction, we briefly reviewed the literature which
suggested that BMI is actually a poor predictor of body size
and shape, as it did not distinguish between bodies varying in
muscle content or those varying in fat content (e.g., Mullie
et al., 2008; Yajnik & Yudkin, 2004). We suggested that
substituting BMI for indices of muscle and fat content would
provide a more accurate prediction of body shape. We further
suggested that the improvement in predicting body size and
shape would be greater for male bodies, as they have a wider
variation in muscle and fat ratios than that for female bodies.
Our analysis showed this to be the case, as the deviations from

the predicted body shape were greater for BMI, and were
greater for male than female bodies (visualised in Figs. 6
and 7). However, for both men and women, the FAT/SMM
model performed significantly better at predicting 3D body
size/shape than the BMI-only model. This emphasises the
need to use body composition rather than BMI to accurately
index variation in body size and shape in future research.

As discussed in the introduction, the ability to generate bodies
which independently vary in either adiposity or muscularity has
considerable application within health research. The
biometrically accurate representation of adipose change is

Fig. 11 Both the left and right columns represent plots of muscle mass (y-
axis) as a function of fat mass (x-axis). All values are in z-scores. Rows (a)
and (b) correspond to the first simulation of self-estimates of body
size/shape. Rows (c) and (d) correspond to the second simulation of ideal
estimates of body size/shape. The left column represents the raw data. In
each row, black dots represent the measured body composition of

participants. The coloured dots represent the responses from the method
of adjustment task; green dots correspond to individuals with psychomet-
ric scores in the highest 30%, and red dots individuals with psychometric
scores in the lowest 30%. The right column is a set of vector plots which
join the measured body composition of an individual (arrow start) to the
body composition predicted from the multivariate models (arrow end)
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important for assessing body size overestimation in women with
eating disorders such as anorexia and bulimia nervosa (e.g.,
Cornelissen, McCarty, Cornelissen, & Tovée, 2017; Gardner &
Bokenkamp, 1996; Probst, Vandereycken & Van Coppenolle,
1997; Slade & Russell, 1973; Tovée, Benson, Emery, Mason, &
Cohen-Tovée, 2003), where the level of body fat is believed to be
a key component of their pathology (Dakanalis et al., 2015;
Fairburn et al., 1999; Lavender et al., 2017; Mitchison &
Mond, 2015; Rosen, 1997). This includes a more realistic simu-
lation of body fat change in interventions for body image distur-
bance (Gledhill et al., 2017). It is hypothesised that the more
realistic the images are in the intervention and the greater the
identification of people undertaking this training, the stronger
the intervention effect will be in treating their condition (Irvine
et al., 2020). Additionally, with the rise of fitspiration and the
importance of a toned, muscular body in the female ideal, this
analysis allows the creation of stimuli with properly calibrated
and independently varied fat and muscle to test the perception of
this ideal (Groves et al., 2019).

We also show that the model can be applied to a specific
individual’s scanned body. Previous studies have used a mod-
el based on BMI to modify an individual’s body size and
shape over a limited range of ±20% in a virtual reality (VR)
environment to allow women with anorexia nervosa to esti-
mate their actual and ideal body size (Mölbert et al., 2018).
Their technique’s relatively limited range of body size chang-
es may restrict the choices that a participant could potentially
make, and thus skew their results. As our new analysis is
based on body composition, it enables not only a more accu-
rate shape change but also a potentially wider range, and can
be applied to CGI bodies for both conventional 2D and VR
paradigms to assess body image disturbance and for interven-
tions (such as Cornelissen, Bester, Cairns, Tovée &
Cornelissen, 2015; Cornelissen et al., 2017; Irvine et al.,
2020). The linear model means that the shape change can be
extended over a large range and is limited only by the reliabil-
ity of the predicted body shapes at the extreme ends of the
spectrum. As it is a linear model, it is of course possible to
extend beyond the range of body shape that we have scanned.
However, extending the model beyond this range is limited by
the fact that its accuracy cannot be verified. This, in turn, will
be addressed by further scanning of bodies with very high or
low muscle and/or fat composition to extend the body data-
base on which the model is based.

Obviously, the next step in the development of the model is
to apply the muscle and adipose dimensions to a whole body
(including head, hands, and feet) with the high-resolution pho-
tographs of the bodymapped onto the 3D surface (as shown in
Fig. 2). This personalised approach to body perception, which
could be used in either 2D or in VR, would improve the
realism of the assessment of a person’s body image and the
potential effectiveness of intervention paradigms (Gledhill
et al., 2017; Irvine et al., 2020).

In conclusion, we have demonstrated proof of concept for a
new way to obtain self-estimates of body size/shape. This
method requires participants to match their beliefs/desires
against CGI stimuli which have been calibrated for skeletal
muscle mass and total body fat. In this way, we obtain a 2D
outcome measure, body composition, the use of which avoids
the confounds inherent in the alternative, BMI.
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