5,788 research outputs found
Flow alteration-ecology relationships in Ozark Highland streams: Consequences for fish, crayfish and macroinvertebrate assemblages
We examined flowalteration-ecology relationships in benthic macroinvertebrate, fish, and crayfish assemblages in Ozark Highland streams, USA, over two years with contrasting environmental conditions, a drought year (2012) and a flood year (2013). We hypothesized that: 1) there would be temporal variation in flow alteration-ecology relationships between the two years, 2) flow alteration-ecology relationshipswould be stronger during the drought year vs the flood year, and 3) fish assemblages would show the strongest relationships with flow alteration. We used a quantitative richest-targeted habitat (RTH) method and a qualitative multihabitat (QMH) method to collect macroinvertebrates at 16 USGS gaged sites during both years. We used backpack electrofishing to sample fish and crayfish at 17 sites in 2012 and 11 sites in 2013.Weused redundancy analysis to relate biological response metrics, including richness, diversity, density, and community-based metrics, to flow alteration.We found temporal variation in flow alteration-ecology relationships for all taxa, and that relationships differed greatly between assemblages. We found relationships were stronger for macroinvertebrates during the drought year but not for other assemblages, and that fish assemblage relationships were not stronger than the invertebrate taxa. Magnitude of average flow, frequency of high flow, magnitude of high flow, and duration of high flow were the most important categories of flow alteration metrics across taxa. Alteration of high and average flows was more important than alteration of low flows. Of 32 important flow alteration metrics across years and assemblages, 19 were significantly altered relative to expected values. Ecological responses differed substantially between drought and flood years, and this is likely to be exacerbated with predicted climate change scenarios. Differences in flow alteration-ecology relationships among taxonomic groups and temporal variation in relationships illustrate that a complex suite of variables should be considered for effective conservation of stream communities related to flow alteration
Cash management practices in Louisiana municipalities
In this paper, we examine the cash management practices in the State of Louisiana and contrasted those practices with the rate of return on investment income due to cash management practices. Essentially, we framed various model hypotheses from the literature, which tells us that if those practices exist then we should see an increased rate of return due to cash management. In general, our research supported the literature but there were some interesting exceptions that merit attention
The collective quantization of three-flavored Skyrmions revisited
A self-consistent large approach is developed for the collective
quantization of SU(3) flavor hedgehog solitons, such as the Skyrmion. The key
to this analysis is the determination of all of the zero modes associated with
small fluctuations around the hedgehog. These are used in the conventional way
to construct collective coordinates. This approach differs from previous work
in that it does not implicitly assume that each static zero mode is associated
with a dynamical zero mode. It is demonstrated explicitly in the context of the
Skyrmion that there are fewer dynamical zero modes than static ones due to the
Witten-Wess-Zumino term in the action. Group-theoretic methods are employed to
identify the physical states resulting from canonical quantization of the
collectively rotating soliton. The collective states fall into representations
of SU(3) flavor labeled by and are given by
where is the spin of the collective state. States with
strangeness do not arise as collective states from this procedure; thus
the (pentaquark) resonance does not arise as a collective
excitation in models of this type.Comment: 12 pages; uses package "youngtab
Effects of zinc and fluoride on the remineralisation of artificial carious lesions under simulated plaque fluid conditions.
The aim was to study the effects of zinc (Zn) and fluoride (F) on remineralisation at plaque fluid concentrations. Artificial carious lesions were created in 2 acid-gel demineralising systems (initially infinitely undersaturated and partially saturated with respect to enamel) giving lesions with different mineral distribution characteristics (high and low R values, respectively) but similar integrated mineral loss values. Lesions of both types were assigned to 1 of 4 groups and remineralised for 5 days at 37°C. Zn and F were added, based on plaque fluid concentrations 1 h after application, to give 4 treatments: 231 μmol/l Zn, 10.5 μmol/l F, Zn/F combined and an unmodified control solution (non-F/non-Zn). Subsequently remineralisation was measured using microradiography. High-R lesions were analysed for calcium, phosphorus, F and Zn using electron probe micro-analysis. All lesions underwent statistically significant remineralisation. For low-R lesions, remineralisation was in the order F(a) < non-F/non-Zn(a) < Zn(a, b) < Zn/F(b), and for high-R lesions F(a) < non-F/non-Zn(b) < Zn(b) < Zn/F(c) (treatments with the same superscript letter not significantly different, at p < 0.05). Qualitatively, remineralisation occurred throughout non-F/non-Zn and Zn groups, predominantly at the surface zone (F) and within the lesion body (Zn/F). Electron probe micro-analysis revealed Zn in relatively large amounts in the outer regions (Zn, Zn/F). F was abundant not only at the surface (F), but also in the lesion body (Zn/F). Calcium:phosphate ratios were similar to hydroxyapatite (all). To conclude, under static remineralising conditions simulating plaque fluid, Zn/F treatment gave significantly greater remineralisation than did F treatment, possibly because Zn in the Zn/F group maintained greater surface zone porosity compared with F, facilitating greater lesion body remineralisation
Empirical and theoretical investigation into the potential impacts of insecticide resistance on the effectiveness of insecticide-treated bed nets.
In spite of widespread insecticide resistance in vector mosquitoes throughout Africa, there is limited evidence that long-lasting insecticidal bed nets (LLINs) are failing to protect against malaria. Here, we showed that LLIN contact in the course of host-seeking resulted in higher mortality of resistant Anopheles spp. mosquitoes than predicted from standard laboratory exposures with the same net. We also found that sublethal contact with an LLIN caused a reduction in blood feeding and subsequent host-seeking success in multiple lines of resistant mosquitoes from the laboratory and the field. Using a transmission model, we showed that when these LLIN-related lethal and sublethal effects were accrued over mosquito lifetimes, they greatly reduced the impact of resistance on malaria transmission potential under conditions of high net coverage. If coverage falls, the epidemiological impact is far more pronounced. Similarly, if the intensity of resistance intensifies, the loss of malaria control increases nonlinearly. Our findings help explain why insecticide resistance has not yet led to wide-scale failure of LLINs, but reinforce the call for alternative control tools and informed resistance management strategies
A new description of spin tunneling in magnetic molecules
A new approach is used that allows to describe the magnetic molecules main
properties in a direct and simple way. Results obtained for the Fe8 cluster
show good agreement with the experimental data.Comment: 7 pages, 2 figure
Geoscience after IT: Part L. Adjusting the emerging information system to new technology
Coherent development depends on following widely used standards that respect our vast legacy of existing entries in the geoscience record. Middleware ensures that we see a coherent view from our desktops of diverse sources of information. Developments specific to managing the written word, map content, and structured data come together in shared metadata linking topics and information types
The Usefulness of Elemental Iron for Cereal Flour Fortification: a Sustain Task Force Report
Fortification of cereal flours may be a useful public health strategy to combat iron deficiency. Cereal flours that are used shortly after production (e.g., baking flour) can be fortified with soluble iron compounds, such as ferrous sulfate, whereas the majority of flours stored for longer periods is usually fortified with elemental iron powders to avoid unacceptable sensory changes. Elemental iron powders are less well absorbed than soluble iron compounds and they vary widely in their absorption depending on manufacturing method and physicochemical characteristics. Costs vary with powder type, but elemental iron powders are generally less expensive than ferrous sulfate. This review evaluates the usefulness of the different elemental iron powders based on results from in vitro studies, rat assays, human bioavailability studies, and efficacy studies monitoring iron status in human subjects. It concludes that, at the present time, only electrolytic iron powder can be recommended as an iron fortificant. Because it is only approximately half as well absorbed as ferrous sulfate, it should be added to provide double the amount of iro
- …