365 research outputs found

    Real or Fake News: Who Knows?

    Get PDF
    After it became one of the most discussed issues during the 2016 U.S. presidential election, this study analyses how often college students are able to tell real from fake news, by applying concepts of news credibility research, using real and fake news stories previously published online.  The study looks into respondents’ research and news consumption behavior, as well as comparing results to respondents’ personal characteristics.  Results show that the amount of information provided matters, while most personal traits do not, and although most are aware of fake news, they do not act as they should

    ACGME Guidelines

    Get PDF
    No abstract available

    Adsorption spectrum of thulium sulphate octahydrate

    Get PDF
    The term splitting of the absorption spectrum of thulium sulphate octalhydrate due to crystal field effects was calculated according to first order perturbation theory. Departures from Russell-Saunders Coupling were taken into account. The various transition mechanisms were examined with and without crystal coupling. It was found that crystal coupling effects are important in destroying J and parity selection rules. Transitions induced by these effects are often more important than transitions calculated neglecting crystal coupling. Zeeman patterns were also studied for the several interesting directions of propagation and polarization of the light relative to the magnetic field directione Susceptibility calculations made for thulium, praseodymium and neodymium sulphate octahydrate indicate field calculations cannot always be made neglecting all but nearest neighbor contributions

    On Polynomial Secret Sharing Schemes

    Get PDF
    Nearly all secret sharing schemes studied so far are linear or multi-linear schemes. Although these schemes allow to implement any monotone access structure, the share complexity, SCSC, may be suboptimal -- there are access structures for which the gap between the best known lower bounds and best known multi-linear schemes is exponential. There is growing evidence in the literature, that non-linear schemes can improve share complexity for some access structures, with the work of Beimel and Ishai (CCC \u2701) being among the first to demonstrate it. This motivates further study of non linear schemes. We initiate a systematic study of polynomial secret sharing schemes (PSSS), where shares are (multi-variate) polynomials of secret and randomness vectors s,r\vec{s},\vec{r} respectively over some finite field \F_q. Our main hope is that the algebraic structure of polynomials would help obtain better lower bounds than those known for the general secret sharing. Some of the initial results we prove in this work are as follows. \textbf{On share complexity of polynomial schemes.}\\ First we study degree (at most) 1 in randomness variables r\vec{r} (where the degree of secret variables is unlimited). We have shown that for a large subclass of these schemes, there exist equivalent multi-linear schemes with O(n)O(n) share complexity overhead. Namely, PSSS where every polynomial misses monomials of exact degree c2c\geq 2 in s\vec{s} and 0 in r\vec{r}, and PSSS where all polynomials miss monomials of exact degree 1\geq 1 in s\vec{s} and 1 in r\vec{r}. This translates the known lower bound of Ω(nlog(n))\Omega(n^{\log(n)}) for multi linear schemes onto a class of schemes strictly larger than multi linear schemes, to contrast with the best Ω(n2/log(n))\Omega(n^2/\log(n)) bound known for general schemes, with no progress since 94\u27. An observation in the positive direction we make refers to the share complexity (per bit) of multi linear schemes (polynomial schemes of total degree 1). We observe that the scheme by Liu et. al obtaining share complexity O(20.994n)O(2^{0.994n}) can be transformed into a multi-linear scheme with similar share complexity per bit, for sufficiently long secrets. % For the next natural degree to consider, 2 in r\vec{r}, we have shown that PSSS where all share polynomials are of exact degree 2 in r\vec{r} (without exact degree 1 in r\vec{r} monomials) where \F_q has odd characteristic, can implement only trivial access structures where the minterms consist of single parties. Obtaining improved lower bounds for degree-2 in r\vec{r} PSSS, and even arbitrary degree-1 in r\vec{r} PSSS is left as an interesting open question. \textbf{On the randomness complexity of polynomial schemes.}\\ We prove that for every degree-2 polynomial secret sharing scheme, there exists an equivalent degree-2 scheme with identical share complexity with randomness complexity, RCRC, bounded by 2poly(SC)2^{poly(SC)}. For general PSSS, we obtain a similar bound on RCRC (preserving SCSC and \F_q but not degree). So far, bounds on randomness complexity were known only for multi linear schemes, demonstrating that RCSCRC \leq SC is always achievable. Our bounds are not nearly as practical as those for multi-linear schemes, and should be viewed as a proof of concept. If a much better bound for some degree bound d=O(1)d=O(1) is obtained, it would lead directly to super-polynomial counting-based lower bounds for degree-dd PSSS over constant-sized fields. Another application of low (say, polynomial) randomness complexity is transforming polynomial schemes with polynomial-sized (in nn) algebraic formulas C(s,r)C(\vec{s},\vec{r}) for each share , into a degree-3 scheme with only polynomial blowup in share complexity, using standard randomizing polynomials constructions

    The What and Whys of DOIs

    Get PDF
    The Direct Object Identifier, a sort of barcode for intellectual content, is used by PLoS in a number of innovative way

    Compliant Metal Enhanced Convection Cooled Reverse-Flow Annular Combustor

    Get PDF
    A joint Army/NASA program was conducted to design, fabricate, and test an advanced, reverse-flow, small gas turbine combustor using a compliant metal enhanced (CME) convection wall cooling concept. The objectives of this effort were to develop a design method (basic design data base and analysis) for the CME cooling technique and tben demonstrate its application to an advanced cycle, small, reverse-flow combustor with 3000 F (1922 K) burner outlet temperature (BOT). The CME concept offers significant improvements in wall cooling effectiveness resulting in a large reduction in cooling air requirements. Therefore, more air is available for control of burner outlet temperature pattern in addition to the benefit of improved efficiency, reduced emissions, and smoke levels. Rig test results demonstrated the benefits and viability of the CME concept meeting or exceeding the aerothermal performance and liner wall temperature characteristics of similar lower temperature-rise combustors, achieving 0.15 pattern factor at 3000 F (1922 K) BOT, while utilizing approximately 80 percent less cooling air than conventional, film-cooled combustion systems

    MPC with Low Bottleneck-Complexity: Information-Theoretic Security and More

    Get PDF
    The bottleneck-complexity (BC) of secure multiparty computation (MPC) protocols is a measure of the maximum number of bits which are sent and received by any party in protocol. As the name suggests, the goal of studying BC-efficient protocols is to increase overall efficiency by making sure that the workload in the protocol is somehow "amortized" by the protocol participants. Orlandi et al. [Orlandi et al., 2022] initiated the study of BC-efficient protocols from simple assumptions in the correlated randomness model and for semi-honest adversaries. In this work, we extend the study of [Orlandi et al., 2022] in two primary directions: (a) to a larger and more general class of functions and (b) to the information-theoretic setting. In particular, we offer semi-honest secure protocols for the useful function classes of abelian programs, "read-k" non-abelian programs, and "read-k" generalized formulas. Our constructions use a novel abstraction, called incremental function secret-sharing (IFSS), that can be instantiated with unconditional security or from one-way functions (with different efficiency trade-offs)
    corecore