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H I G H L I G H T S

• Flow alteration-ecological response re-
lationships vary temporally.

• Relationships also vary between taxo-
nomic assemblages within the same
community.

• Flow magnitude and frequency are the
categories of alteration that affect most
taxa.

• The majority of important flow metrics
are altered relative to expected values.

• Effective conservation of stream com-
munities depends on complex suite of
variables.
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We examined flow alteration-ecology relationships in benthicmacroinvertebrate, fish, and crayfish assemblages
in Ozark Highland streams, USA, over two years with contrasting environmental conditions, a drought year
(2012) and a flood year (2013). We hypothesized that: 1) there would be temporal variation in flow
alteration-ecology relationships between the two years, 2) flow alteration-ecology relationships would be stron-
ger during the drought year vs the flood year, and 3) fish assemblages would show the strongest relationships
with flow alteration. We used a quantitative richest-targeted habitat (RTH) method and a qualitative multi-
habitat (QMH) method to collect macroinvertebrates at 16 USGS gaged sites during both years. We used back-
pack electrofishing to samplefish and crayfish at 17 sites in 2012 and 11 sites in 2013.Weused redundancy anal-
ysis to relate biological responsemetrics, including richness, diversity, density, and community-basedmetrics, to
flow alteration. We found temporal variation in flow alteration-ecology relationships for all taxa, and that rela-
tionships differed greatly between assemblages. We found relationships were stronger for macroinvertebrates
during the drought year but not for other assemblages, and that fish assemblage relationships were not stronger
than the invertebrate taxa. Magnitude of average flow, frequency of high flow, magnitude of high flow, and du-
ration of high flow were the most important categories of flow alteration metrics across taxa. Alteration of high
and average flows was more important than alteration of low flows. Of 32 important flow alteration metrics
across years and assemblages, 19 were significantly altered relative to expected values. Ecological responses dif-
fered substantially between drought and flood years, and this is likely to be exacerbated with predicted climate

Keywords:
Flow alteration
Environmental flows
Hydrology
Fish
Crayfish
Macroinvertebrates

Science of the Total Environment 672 (2019) 680–697

☆ This draft manuscript is distributed solely for the purposes of scientific peer review. Its content is deliberative and predecisional, so it must not be disclosed or released by reviewers.
Because the manuscript has not yet been approved for publication by the U.S. Geological Survey (USGS), it does not represent any official USGS findings or policy.
⁎ Corresponding author.

E-mail address: dustin.lynch@okstate.edu (D.T. Lynch).

https://doi.org/10.1016/j.scitotenv.2019.03.383
0048-9697/© 2019 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Science of the Total Environment

j ourna l homepage: www.e lsev ie r .com/ locate /sc i totenv

http://crossmark.crossref.org/dialog/?doi=10.1016/j.scitotenv.2019.03.383&domain=pdf
https://doi.org/10.1016/j.scitotenv.2019.03.383
dustin.lynch@okstate.edu
Journal logo
https://doi.org/10.1016/j.scitotenv.2019.03.383
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/scitotenv
proyster2
Text Box
This document is a U.S. government work and is not subject to copyright in the United States.



change scenarios. Differences in flow alteration-ecology relationships among taxonomic groups and temporal
variation in relationships illustrate that a complex suite of variables should be considered for effective conserva-
tion of stream communities related to flow alteration.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The natural flow regime paradigmposits that the ecological integrity
of rivers depends on their natural dynamic character (Poff et al., 1997),
and that traditional approaches tomanaging streams by simply focusing
onminimum low flows may be inadequate to protect these ecosystems
and their biota (Bunn and Arthington, 2002; Poff et al., 2010). A concept
related to the naturalflow regime is the environmentalflow regime; the
key difference is that environmental flow regimes allow for some de-
gree of hydrologic alteration in an attempt to balance the needs of
humans as well as stream ecosystems, while still resulting in the same
patterns and ecological outcomes as the natural flow regime (Poff
et al., 1997; Bunn and Arthington, 2002; Poff et al., 2010). One of the
great challenges in the implementation of the environmental flows (e-
flows) approach tomanagement and restoration is accounting for natu-
ral variability and complexity among different types of streams, even
those within the same geographic region (Arthington et al., 2006;
Kennard et al., 2010; Poff et al., 2010).

Natural streamflow regimes are threatened worldwide by a host
of anthropogenic factors, including construction of dams and diver-
sion structures, groundwater withdrawals from aquifers, and other
hydromorphological alterations (Sondergaard and Jeppesen, 2007;
Carlisle et al., 2010). Additionally, extreme climate events are ex-
pected to increase as a result of global climatic change, including
many events that directly impact lotic ecosystems, such as increases
in drought frequency, duration, and intensity in many regions of the
world (Beniston et al., 2007; Beche et al., 2009), including in the focal
region of this study, where these phenomena have already had con-
sequences for rare and imperiled aquatic species (Magoulick and
Lynch, 2015). The potential interactive effects of natural and anthro-
pogenic stressors such as drought, climate change, and human water
use on ecosystems highlight the need for increased understanding of
each stressor (Christensen et al., 2006; Beche et al., 2009). For exam-
ple, water withdrawals during dry years can reduce habitat connec-
tivity and result in critical flow reductions (Beche et al., 2009). The
maintenance of natural hydrologic regimes can also provide resis-
tance to species invasion (Closs and Lake, 1996; Caiola et al., 2014),
another pervasive world-wide phenomenon in freshwater habitats,
often facilitated by anthropogenic alteration of flow regimes (Bunn
and Arthington, 2002). For example, naturally flashy streams or riv-
ers typified by frequent or rapid onset of high flows can prevent the
establishment of non-native fish species that lack behavioral adapta-
tions to rapid onset of flows (Meffe, 1984; Poff et al., 2010) or have a
vulnerable juvenile stage present during periods of peak flows
(Fausch et al., 2001; Poff et al., 2010).

Quantifying flow alteration, the degree of variation away from the
natural flow regime, is a crucial step in environmental-flows based
management approaches such as the ELOHA framework (Poff et al.,
2010; Kendy et al., 2012; Gillespie et al., 2014; McManamay and
Frimpong, 2015; King et al., 2015; Sengupta et al., 2018). While there
is strong evidence thatflowalteration generally negatively affects biodi-
versity as well as ecosystem function (Bunn and Arthington, 2002;
Harris and Heathwaite, 2011; Warfe et al., 2014), there are challenges
to establishing transferable relationships between flow alteration and
ecological response (Poff and Zimmerman, 2010). Crucial steps in the
ELOHA process include regional flow regime classification and the
quantification of flow alteration; these steps are often made difficult
by lack of hydrological data due to the somewhat sparse nature of

stream gages, which are often placed only on larger order stream seg-
ments and may not represent all stream types in an area (Zimmerman
et al., 2018). Determining quantifiable relationships between hydro-
logic alteration and biological data is not only of great interest in
informing management decisions relating to issues of water conserva-
tion and restoration (McManamay et al., 2014), but could potentially
also be a critical tool in the assessment of the possible impacts of climate
change on stream ecosystems and organisms (Xenopolous et al., 2005;
Farjad et al., 2015).

The objective of this studywas to examine flow alteration-biological
response relationships for fish, crayfish, and benthic macroinvertebrate
assemblages in the Ozark Highlands. We hypothesized that: 1) there
would be temporal variation in flow alteration-ecology relationships
between the two years (drought year versus flood year), 2) flow
alteration-ecology relationships would be stronger during the drought
year vs the flood year, and 3) fish assemblages would show the stron-
gest relationships with flow alteration.

We hypothesized that the potential interactive effects between the
dual stressors of drought and flow alterationwould lead to stronger rela-
tionships during the drought year (Acuna et al., 2005; Beche et al., 2009;
Bunn and Arthington, 2002; Dodds et al., 2004; Poff and Allan, 1995;
Lynch et al., 2018). We hypothesized that fish would be more strongly
impacted by drought than the other groups due to the ability of benthic
macroinvertebrates and crayfish to utilize the hyporheic zone as a refuge
(DiStefano et al., 2009;Wood et al., 2010; Stubbington, 2012) or to utilize
drought-coping life history strategies ranging from aestivation (Wickson
et al., 2012) and desiccation-resistant eggs (Pallares et al., 2016) to over-
land escape (Chester et al., 2014) or shifts in timing of emergence
(Stenroth et al., 2010). To address our objectives, we conducted aquatic
community sampling at 18 sites in Groundwater Flashy streams in the
Ozark Highlands over two years and used redundancy analysis (RDA)
to relate biological response variables to metrics of flow alteration, in-
cluding magnitude, frequency, duration, timing, and rate of change.

1.1. Study area

The Ozark Highlands ecoregion of southern Missouri, northern
Arkansas, and northeast Oklahoma, USA (Omernik and Griffith,
2014), is heavily affected by a suite of anthropogenic impacts, in-
cluding rapid development of urban areas and agricultural practices
that affect water quality (Petersen et al., 2005; Haggard, 2010; Scott
et al., 2011), expansion of natural gas extraction (Johnson et al.,
2015), displacement of native fauna due to the spread of invasive
species (Magoulick and DiStefano, 2007; Larson et al., 2009), and di-
rect hydrologic alteration of streams via construction of reservoirs
and dams (TNC-OEAT, 2003). This region is home to a diverse assort-
ment of freshwater habitats and aquatic species, including endemic
fish, crayfish, mussels, macroinvertebrates, and herpetofauna (TNC-
OEAT, 2003). Understanding the impacts of hydrologic alteration
could be a crucial step in the formulation of guidelines for protection
and restoration of stream ecosystems in the region.

2. Methods

2.1. Site selection

Samplingwas conducted at 18 siteswithUSGS streamgages over two
summer field seasons (May–July) during 2012 and 2013 in northwest
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Arkansas, southwest Missouri, and northeast Oklahoma (Fig. 1). Precipi-
tation and flow conditions contrasted strongly between the two years. In
summer 2012 the study area experienced an extreme drought, as mea-
sured on the Palmer Drought Severity Index (Palmer, 1965), while
sustained higher than normal precipitation resulted in summer flooding
at most sites during 2013 (NOAA, 2015). To facilitate biological compar-
isons, site selection was limited to a single ecoregion, the Ozark High-
lands, a single physiographic region, the Springfield Plateau, and a
single flow regime, Groundwater Flashy streams, based on a classifica-
tion of Ozark-Ouachita Interior Highland streams into seven different hy-
drologic flow regimes (Leasure et al., 2016). Streams selected ranged in
drainage area from 16 to 542 km2.

Macroinvertebrate collections were taken at 16 sites that were the
same in both years (Fig. 1). Due to extreme differences in sampling con-
ditions between the two years (drought in 2012 versus extensive
flooding in 2013), we were unable to resample seven of the largest
sites from the first field season for fish and crayfish during the second
season, but did add one additional site. Seventeen sites were sampled
for fish and crayfish in 2012 and 11 in 2013, with 10 overlapping sites
between the two years (Fig. 1).

2.2. Hydrologic variable and flow alteration estimation

We identified 64 USGS gaged streams in our study area in least-
disturbed reference condition based on a composite hydrologic distur-
bance index (Falcone et al., 2010) using water withdrawals, density of
major dams, change in dam storage between 1950 and 2009, percent
canals in the watershed, water discharge locations, road density, and
land cover fragmentation (Leasure et al., 2016). All streams selected in
least-disturbed condition had an index less than the median of all
gaged streams in the study area (Leasure et al., 2016). Using these
streams, we developed a set of random forest models to predict 171
flow metrics (Olden and Poff, 2003). Full models were built initially
that included 282 predictor variables describing climate, geology, soils,

topography, groundwater and landscape characteristics within refer-
ence watersheds (Appendix A). Importance of each variable was
assessed using the default method of the randomForest R package
(LiawandWiener, 2002) that is based on howmuch prediction error in-
creaseswhen each variable is permutedwhile others are left the same. A
benefit of using random forest models for this approach is that they are
not sensitive to the number of variables at each node or the number of
trees (Liaw and Wiener, 2002). A reduced model was built for each
flow metric that included only the 30 most important predictor
variables.

Data were collected at all 208 USGS gages in the Interior Highlands
for any predictor variable selected for at least one of the reduced ran-
dom forest models. The reduced random forest models were used to
predict values of each flow metric expected under natural conditions,
as well as the distribution of expected values. The expected value for
each flow metric under natural conditions was taken as the median of
the predicted distribution.

Flow metrics were calculated for every complete 15 year period
within the daily flow records of 18 gages used in this study. Flow alter-
ation was calculated as:

flow alteration ¼ observed−median predictedð Þ
std:dev predictedð Þ

where observed is the value of the flow metric from a specific period
with a gage's record, and predicted is the distribution of values expected
under natural conditions predicted by the random forest models. The
standard deviation (std. dev) of predicted natural values was used for
standardization rather than the interquartile range because the inter-
quartile range may be zero for random forest models with high accu-
racy. We decided not to assess flow alteration as observed/expected as
recommended by Carlisle et al. (2010) because of issues arising when
expected values are zero. We dropped flow metrics that were outside

Fig. 1.Map of study area showing sample sites, stream network, and Springfield Plateau (shaded area).
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our threshold criteria for bias, precision and accuracy, reducing our ini-
tial set of 171 metrics to 154 (Appendix B).

2.3. Aquatic community assessment

Benthic macroinvertebrates, fish, and crayfishwere sampled at each
site. Reaches were defined by the presence of at least three discrete
units of riffles, runs, and pools, and a qualitative attempt was made to
ensure that sampling reaches were as comparable as possible between
sites. Sampling was stratified by habitat to include three units each of
riffles, runs and pools for a total of nine units per reach. Total area of
reaches ranged from 140 to 957 m2 and units averaged 8.3 m (SD =
3.2) in length across all habitat types. Habitat units were located at
least 100 m from road crossings to avoid the hydrologic influence of
man-made structures that could affect stream habitat (Barbour et al.,
1999).

Benthic macroinvertebrate samples were typically collected at sites
a few hours prior to fish and crayfish sampling. Macroinvertebrates
were sampled using two different, complementary methods at each
site, a semi-quantitative richest-targeted habitat (RTH) method and a
qualitative multiple habitat (QMH) method, both developed for the
U.S. Geological Survey National Water Quality Assessment (NAWQA)
program (Moulton et al., 2002). Quantitative RTH collections were
taken in riffles using a 500-μm mesh Slack sampler (50 cm × 30 cm)
equipped with a 0.25 m2 area PVC frame attached to the upstream
end of the sampler (Moulton et al., 2002). The Slack sampler was posi-
tioned immediately downstream of the chosen quadrat perpendicular
to the direction of flow. Large cobble and woody debris were lightly
brushed, inspected for any remaining invertebrates, and then removed
from the sampling area. The sampling area was then agitated by
disturbing the substrate upstreamof themouth of the sampler, allowing
the dislodged invertebrates to flow into the trailing net. The nine dis-
crete subsamples were composited into a 19-L plastic bucket for pro-
cessing, which consisted of rinsing and removing large debris from the
samples, followed by elutriation and sieving (with a 500 μm sieve) in
order to separate invertebrates and organic debris from inorganic
material.

The QMH method was used to document invertebrate taxa present
in all habitat types throughout the reach (Moulton et al., 2002). Crew
members assessed the entire reach to determine the number of differ-
ent instream habitat types present and to estimate the proportion of
each type. QMH samples were collected using a D-frame kicknet with
500-μm mesh. Each habitat type was sampled in proportion to total
habitat area for a standardized timeof 1 h per reach. Sampleswere proc-
essed in the field as described for the RTH method.

In the laboratory, RTH and QMH samples were sorted on a square
gridded subsampling frame of 25 5 × 5 cm squares using a fixed-
count approach targeting a minimum of 300 organisms (Barbour et al.,
1999; Moulton et al., 2000). After pouring the sample into the frame
and allowing it to settle evenly, an initial inspection was performed to
remove large and rare organisms likely to be missed during subsam-
pling. A grid square was randomly selected and all organisms present
were removed from the grid and processed. Subsampling proceeded
in this fashion until a minimum of 300 organisms were counted, with
the square in which the 300th organism was counted also fully proc-
essed. Macroinvertebrates were identified to the lowest practical taxo-
nomic level, generally family or genus. To estimate total numbers of
organisms, a laboratory subsampling correction factor was used
(Moulton et al., 2000) in which the total number of grids was divided
by the number of grids sorted during subsampling and multiplied by
the number of organisms subsampled. Large and rare organisms taken
from the sample as awholewere added to these numberswithout a cor-
rection factor. These numbers were then used to calculate invertebrate
community response metrics.

Fish and crayfish were collected using a Smith-Root Model LR-24
backpack-electrofishing unit which has been shown effective for fish

and crayfish sampling in Ozark streams (Rabeni et al., 1997; Dauwalter
and Pert, 2003). Standard LR-24 settings for power output based on am-
bient stream conductivity were used. Prior to sampling, 1.6 cm2 mesh
block-nets were placed at the end of each habitat unit to prevent ani-
mals from escaping or biasing sampling data by moving from one unit
to another. A four-person team conducted three upstream passes per
habitat unit. Collections from all passes were kept in separate buckets
until all passes were completed. Each pass was processed separately
and all specimens were identified to species and released live back
into the stream.

2.4. Biological response metric selection

Biological response metrics were calculated for macroinvertebrate,
fish, and crayfish assemblages (Table 1). A subset of metrics considered
most ecologically relevant was chosen based on published relationships
and best professional judgment. The five macroinvertebrate response
metrics chosen were: abundance; taxa richness; Simpson's diversity;
percent contribution of individuals belonging to Orders Ephemeroptera,
Plecoptera, and Trichoptera (EPT), taxa that are associated with undis-
turbed habitat and high water quality (Karr, 1991); and percent contri-
bution of the family Chironomidae, considered a generally tolerant
taxon predicted to increase in abundance with increasing levels of per-
turbation (Barbour et al., 1999). Response metrics calculated from RTH
and QMH samples were analyzed separately.

For crayfish, the three response metrics chosen were: Simpson's di-
versity, total crayfish density (per volume sampled), and percent contri-
bution of species designated as habitat generalists in an assessment of
invasion risk of crayfish in the eastern United States (Larson and
Olden, 2010). These are represented in our dataset by two species,
Faxonius neglectus neglectus and Faxonius virilis. Species richness was
not used as a community response metric for crayfish due to the gener-
ally low and relatively uniform richness across sites.

For fish, the five biological response metrics chosen were: species
richness, Simpson's diversity, total fish density (per volume sampled),
percent of total individuals belonging to Family Centrarchidae, and per-
cent of total individuals belonging to species categorized as intolerant,
i.e. sensitive to various environmental perturbation, in an Index of Biotic
Integrity specifically developed for fish assemblages of the Ozark High-
lands (Dauwalter et al., 2003). Percent Centrarchidae was chosen as a
responsemetric becausemost Ozark centrarchids are ecologically toler-
ant habitat generalists (Dauwalter et al., 2003; Robison and Buchanan,
1988).

Table 1
Mean (±SE) values for biological response metrics.

Variable 2012 2013

RTH macroinvertebrate taxa richness 22 (±1.48) 19 (±1.09)
RTH macroinvertebrate Simpson's diversity 0.81 (±0.03) 0.77 (±0.02)
RTH macroinvertebrate % EPT 49.65 (±4.93) 59.93 (±4.65)
RTH macroinvertebrate % Chironomidae 9.31 (±3.48) 11.54 (±2.50)
RTH macroinvertebrate abundance 2568 (±757.14) 4064 (±809.97)
QMH macroinvertebrate taxa richness 25 (±2.28) 27 (±1.29)
QMH macroinvertebrate Simpson's diversity 0.73 (±0.05) 0.85 (±0.02)
QMH macroinvertebrate % EPT 22.67 (±0.04) 33.94 (±0.04)
QMH macroinvertebrate % Chironomidae 6.33 (±0.03) 17.46 (±2.94)
QMH macroinvertebrate abundance 2710 (±799.82) 3292 (±398.98)
Fish species richness 16 (±0.94) 15 (±1.15)
Fish Simpson's diversity 0.73 (±0.03) 0.73 (±0.04)
Fish % intolerant 70.35 (±4.21) 71.56 (±4.03)
Fish % Centrarchidae 2.68 (±0.77) 5.08 (±1.67)
Fish total density 11.66 (±0.77) 11.73 (±1.51)
Crayfish Simpson's diversity 0.20 (±0.05) 0.32 (±0.06)
Crayfish % extraregional 80.10 (±8.34) 40.46 (±11.07)
Crayfish total density 3.54 (±1.05) 8.00 (±2.66)
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2.5. Data analysis

Redundancy analysis (RDA) was used to evaluate flow alteration-
ecology relationships separately for assemblages and sampling years.
RDA is a canonical ordination procedure that examines relationships
among response variables and predictor variables in multivariate
space (ter Braak, 1995). Linear model RDA's were appropriate because
preliminary Detrended Correspondence Analyses (DCA) indicated that
species gradient lengths were b1 standard deviation (ter Braak, 1995).
We used forward selection in CANOCO 4.5 (ter Braak and Smilauer,
2002) to select flow alteration variables that were related to response
metrics. We limited the flow alteration variables to those with lambda
≥ 0.7 after entry into the model.

Prior to RDA analysis, response variables were centered and stan-
dardized. Scaling of ordination scoreswas focused on inter-response var-
iable correlations rather than inter-sample distances, and the response
variable scores were standardized to prevent variables with large vari-
ances from disproportionately influencing ordination diagrams (ter
Braak and Smilauer, 2002). Monte Carlo permutations were performed
for each RDA to test the significance of the canonical axes together and

were then performed for each RDA to determine the overall importance
of remaining environmental variables in influencing response variables.
Analyses of response variable-flow alteration relationships were per-
formed separately for each year, taxonomic assemblage and sampling
type (for macroinvertebrates). All significant hydrologic alteration met-
rics are listed and defined in Table 2. Percent variance explained in
assemblage-environment relationships was examined by comparing
eigenvalues from RDA analysis in order to test our second and third
hypotheses.

3. Results

3.1. RTH macroinvertebrates

In 2012, RTHmacroinvertebrate responsemetrics were significantly
related to alteration of DH18, TA3, and RA3 (RDA p b 0.001, Table 2,
Fig. 2). RA3 was significantly reduced relative to expected values
(Fig. 2). Diversity, richness, and percent EPT were all negatively related
to alteration of TA3, while abundance and percent Chironomidae were

Table 2
Important hydrologic alteration metrics (Olden and Poff, 2003) used in RDA analysis for 2012 and 2013 with mean (±SE) values.

Code Definition Category Mean (±SE)

2012 RTH macroinvertebrates
DH18 High flow duration (upper threshold 3 times median flows) Duration of high flows −0.41 (±0.22)
TA3 Seasonal predictability of flooding Timing of average flows 1.20 (±0.59)
RA3 Fall rate Rate of change of average flows −0.13 (±0.05)

2013 RTH macroinvertebrates
MA22 Mean November flows Magnitude of average flows −0.27 (±0.05)
FH3 High flood pulse count (upper threshold 3 times median daily flow) Frequency of high flows −0.95 (±0.24)
DH23 Flood duration (mean annual number of days that flow remains above threshold averaged over all years) Duration of high flows −0.27 (±0.16)
TH2 Variability in Julian date of annual maximum Timing of high flows −1.06 (±0.57)

2012 QMH macroinvertebrates
MA12 Mean January flows Magnitude of average flows −0.16 (±0.06)
ML12 Mean minimum December flows Magnitude of low flows 0.13 (±0.04)
MH3 Mean maximum March flows Magnitude of high flows −0.14 (±0.06)
MH20 Specific mean annual maximum flows (maximum flows divided by catchment area) Magnitude of high flows 0.01 (±0.27)
FH11 Flood frequency (mean number of discrete flood events per year) Frequency of high flows −0.56 (±0.32)

2013 QMH macroinvertebrates
MA29 Variability in June flows Magnitude of average flows −0.74 (±0.21)
MH17 High flow discharge Magnitude of high flows −0.58 (±0.15)
FH4 High flood pulse count (upper threshold 7 times median daily flow) Frequency of high flows −0.72 (±0.20)
FH5 Flood frequency (upper threshold times median flow over all years) Frequency of high flows 1.08 (±0.68)
DH23 Flood duration (mean annual number of days that flow remains above threshold averaged over all years) Duration of high flows −0.27 (±0.16)

2012 fish
MA22 Mean November flows Magnitude of average flows −0.29 (±0.05)
MA36 Variability across monthly flows Magnitude of average flows −0.82 (±0.14)
FH1 High flood pulse count (pulse defined as 75th percentile) Frequency of high flows −0.74 (±0.31)
FH2 Variability in high flood pulse count Frequency of high flows −0.75 (±0.30)
FH8 Flood frequency (25th percentile upper threshold) Frequency of high flows −0.73 (±0.32)
DH7 Variability in annual maxima of 3 day mean daily discharge Duration of high flows −0.04 (±0.12)

2013 fish
MH13 Variability across maximum monthly flows Magnitude of high flows 0.26 (±0.38)
MH18 Variability across annual maximum flows Magnitude of high flows 1.60 (±1.00)
FH11 Flood frequency (mean number of discrete flood events per year) Frequency of high flows −0.18 (±0.41)
DH17 High flow duration (upper threshold 1 times median flows) Duration of high flows −0.54 (±0.69)
RA3 Fall rate Rate of change of average flows −0.11 (±0.09)

2012 crayfish
MA3 Variability in daily flows Magnitude of average flows −0.42 (±0.26)
MA32 Variability in September flows Magnitude of average flows −0.51 (±0.2)
MA33 Variability in October flows Magnitude of average flows −0.41 (±0.19)
DL18 Number of zero-flow days Duration of low flows −0.18 (±0.13)
RA2 Variability in rise rate Rate of change of average flows 2.31 (±0.38)

2013 crayfish
MA3 Variability in daily flows Magnitude of average flows −0.85 (±0.32)
MA21 Mean October flows Magnitude of average flows −0.01 (±0.06)
DH1 Annual maxima of daily mean discharge Duration of high flows −0.24 (±0.08)
TH1 Julian date of annual maximum Timing of high flows 0.55 (±0.22)
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positively related to alteration of RA3 (Fig. 2). Cumulative percent vari-
ance explained by flow alteration was 88.6% for Axes 1 and 2 (Table 3).

In 2013, RTH macroinvertebrate assemblages were significantly re-
lated to alteration of MA22, FH3, DH23, and TH2 (RDA p b 0.001,
Table 2, Fig. 2). MA22 and FH3 were significantly reduced relative to

expected values (Fig. 2). Diversity was positively related to alteration
of MA22, while percent Chironomidae was negatively related to alter-
ation of MA22 (Fig. 2). Percent EPT was positively related to alteration
of TH2 (Fig. 2). Cumulative percent variance explained by flow alter-
ation was 80.2% for Axes 1 and 2 (Table 3).

In RTH macroinvertebrate assemblages, no category of alteration
metric stood out as most important. Of the seven important flow al-
teration metrics, two were duration, two were timing, one was mag-
nitude, one was frequency, and one was rate of change (Table 2,
Fig. 2). Four of sevenmetrics were high flowmetrics, and the remain-
ing three were average flowmetrics. Nometrics belonging to the low
flow category were important. No metrics were important in RTH
macroinvertebrate assemblages in both years. One metric, DH23,
was also an important metric in QMH macroinvertebrate assem-
blages, and two others, MA22 and RA3, were also important metrics
in fish assemblages (Table 2).

3.2. QMH macroinvertebrates

In 2012, QMH macroinvertebrate response metrics were signifi-
cantly related to alteration of MA12, MH3, MH20, ML12, and FH11

Fig. 2. Redundancy analysis ordination plot relating RTH (Richest TargetedHabitat)macroinvertebrate assemblages and selectedflowalteration variables in 2012 and2013. Boxplots show
flow alteration variables used with notches indicating 95% CI. Angles of arrows indicate associations and length of arrows indicate strength of the relationship. Flow alteration variable
abbreviations and descriptions are given in Table 2.

Table 3
Cumulative % variance in RDA axes.

Assemblage Cumulative % variance explained

Axis 1 Axis 2

2012 (drought year)
RTH macroinvertebrates 68.5 88.6
QMH macroinvertebrates 60.9 93.6
Fish 44.8 72.4
Crayfish 68.5 88.6

2013 (flood year)
RTH macroinvertebrates 54.9 80.2
QMH macroinvertebrates 43.4 69.6
Fish 54.0 86.7
Crayfish 57.7 90.7
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(RDA p b 0.001, Table 2, Fig. 3). MA12 andMH3were significantly re-
duced and ML12 significantly increased relative to expected values
(Fig. 3). Richness, diversity, and percent EPT were all negatively re-
lated to alteration of FH11, while percent Chironomidae was posi-
tively related to alteration of MH3 (Fig. 3). Cumulative percent
variance explained by flow alteration was 93.6% for Axes 1 and 2
(Table 3).

In 2013, QMH macroinvertebrate response metrics were sig-
nificantly related to alteration of MA29, MH17, FH4, FH5, and
DH23 (RDA p b 0.001, Table 2, Fig. 3), and MA29, MH17, and
FH4 were significantly reduced relative to expected values
(Fig. 3). Percent EPT was negatively related to alteration of FH5
and DH23, while alteration of both of these metrics was posi-
tively related to percent Chironomidae (Fig. 3). Cumulative per-
cent variance explained by flow alteration was 69.6% for Axes 1
and 2 (Table 3).

In QMH macroinvertebrate assemblages, magnitude was the
most important category of alteration metric; six of the ten impor-
tant alteration metrics belonged to this category (Table 2, Fig. 3).
Frequency was the second most important category, with three of
the ten. One metric belonged to the duration category. Seven of

the ten metrics were high flow metrics, with three average flow
and one low flow. No metrics were important in QMH assemblages
in both years. One metric, DH23, was also important in RTH macro-
invertebrate assemblages, and another, FH11, in fish assemblages
(Table 2).

3.3. Crayfish

In 2012, crayfish response metrics were significantly related
to alteration of MA3, MA32, MA33, DL18 and RA2 (RDA p b

0.001, Table 2, Fig. 4). DL18, MA32, and MA33 were significantly
reduced and RA2 significantly increased relative to expected
values (Fig. 4). Diversity was negatively related to alteration of
DL18, while total density and percent generalist crayfish were
positively related to alteration of RA2 (Fig. 4). Cumulative per-
cent variance explained by flow alteration was 88.6% for Axes 1
and 2 (Table 3).

In 2013, crayfish response metrics were significantly related
to alteration of MA3, MA21, DH1, and TH1 (RDA p b 0.001,
Table 2, Fig. 4). DH1 was significantly reduced and TH1 signifi-
cantly increased relative to expected values (Fig. 4). Total

Fig. 3. Redundancy analysis ordination plot relating QMH (Qualitative Multi-Habitat) macroinvertebrate assemblages and selected flow alteration variables in 2012 and 2013. Boxplots
show flow alteration variables used with notches indicating 95% CI. Angles of arrows indicate associations and length of arrows indicate strength of the relationship. Flow alteration
variable abbreviations and descriptions are given in Table 2.
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Density was positively related to alteration of DH1 while diver-
sity was negatively related to alteration of MA21 (Fig. 4). Cumu-
lative percent variance explained by flow alteration was 90.7%
for Axes 1 and 2 (Table 3).

In crayfish assemblages, magnitude was the most important cate-
gory of alteration metric; five of the nine important alteration metrics
between years belonged to this category (Table 2, Fig. 4). Of the remain-
ing four important metrics, two belonged to the duration category, one
to the timing category, and one to the rate of change category. Six of the
nine metrics were average flow metrics, with two high flows, and one
low flow. One metric, MA3, was an important metric in crayfish assem-
blages in both years. No specific metrics important to crayfish assem-
blages were important in other taxonomic groups (Table 2).

3.4. Fish

In 2012, fish response metrics were significantly related to alter-
ation of MA22, MA36, FH1, FH2, FH8, and DH7 (RDA p b 0.001,
Table 2, Fig. 5). MA22, MA36, FH1, and FH2 were significantly re-
duced relative to expected values (Fig. 5). Diversity and richness
were positively related to alteration of MA22, FH2, and MA36 and
negatively related to alteration of DH7 (Fig. 4). Percent intolerant

fish was negatively related to alteration of FH1 and FH8 (Fig. 5). Cu-
mulative percent variance explained by flow alteration was 72.4% for
Axes 1 and 2 (Table 3).

In 2013,fish responsemetricswere significantly related to alteration
of MH13, MH18, FH11, DH7, and RA3 (RDA p b 0.001, Table 2, Fig. 5).
MH18was significantly increased and RA3 significantly reduced relative
to expected values (Fig. 5). Percent intolerant fishwas positively related
to alteration of MH18, total density negatively related to alteration of
RA3, and richness and diversity negatively related to alteration of
MH18 and DH7 (Fig. 5). Cumulative percent variance explained by
flow alteration was 86.7% for Axes 1 and 2 (Table 3).

In fish assemblages, magnitude and frequencywere themost impor-
tant categories of flow alteration metrics; eight of the 11 important al-
teration metrics between years were in these two categories (Table 2,
Fig. 5). Of the remaining three important metrics, two belonged to the
duration category and one to the rate of change category. Eight of the
11 metrics were high flow metrics and the remaining three were in
the average flow category. No metrics belonging to the low flow cate-
gory were important. No metrics were important in fish assemblages
in both years. MA22 and RA3 were also important metrics in RTH mac-
roinvertebrate assemblages and FH11 in QMH macroinvertebrate as-
semblages (Table 2).

Fig. 4. Redundancy analysis ordination plot relating crayfish assemblages and selected flow alteration variables in 2012 and 2013. Boxplots show flow alteration variables used with
notches indicating 95% CI. Angles of arrows indicate associations and length of arrows indicate strength of the relationship. Flow alteration variable abbreviations and descriptions are
given in Table 2.
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3.5. Aquatic community

Considering all four assemblages over both years, 32 different
metrics of hydrologic alteration were significantly related to bio-
logical response metrics (Table 2). In order of importance, the
five categories were ranked: magnitude (14), frequency (7), dura-
tion (6), timing (3) and rate of change (2). In terms of average,
low, and high flows, metrics relating to alteration of high flows
were the most numerous (19), followed by average flows (11),
with a much lower number of important alteration metrics relat-
ing to low flows (2). All seven frequency metrics and all but one
of the duration metrics were related to high flows, while the ma-
jority of important magnitude metrics were related to average
flows. The four most important specific categories were MA (8),
FH (7), MH (5), and DH (5). Four specific alteration metrics were
important in multiple assemblages: MA22, FH11, DH23, and RA3
(Table 2).

4. Discussion

Our hypothesis that there would be temporal variation in flow
alteration-ecology relationships was supported. The complete

overlap of sites for macroinvertebrate collections makes it possible
to draw temporal comparisons in flow alteration-ecological re-
sponse relationships between the two years for macroinvertebrate
assemblages. The contrast between years was most pronounced in
the RTH samples, which may be because they are collected only
from riffles, the stream habitat most heavily affected by drought
(Dekar and Magoulick, 2007; Chester and Robson, 2011). While we
expected some differences between the years, it was still somewhat
surprising to see no consistently important metrics between the two
years in either RTH or QMH collections. In some cases, there were
seemingly different relationships between response metrics. For ex-
ample, RTH percent EPT was negatively related to alteration of TA3
(seasonal predictability of flooding) in 2012, whereas percent EPT
was positively related to alteration of TH2 (variability in Julian date
of annual maximum) in 2013. However, in both cases percent EPT
was reduced with altered flow timing (discussed further below). It
appears that alteration of flow timing is important for percent EPT,
but specific relationships vary temporally.

Non-stationarity in environmental conditions can complicate our
ability to formulate predictable flow-ecology relationships and pose
challenges for the implementation of e-flows science (Poff et al., 2010;
Rolls et al., 2012; Katz and Freeman, 2015; Poff, 2017; Lynch et al.,

Fig. 5. Redundancy analysis ordination plot relating fish assemblages and selected flow alteration variables in 2012 and 2013. Boxplots show flow alteration variables used with notches
indicating 95% CI. Angles of arrows indicate associations and length of arrows indicate strength of the relationship. Flow alteration variable abbreviations and descriptions are given in
Table 2.
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2018). As the hydrologic cycle is further altered by global climate
change and the severity, duration and frequency of droughts increases
(Masson-Delmotte et al., 2013; Farjad et al., 2015) it is crucial to incor-
porate strategies that realistically account for these phenomena when
implementing e-flows science into management decisions (Poff,
2017). One such strategy is to focus on resilience, the maintenance of
processes and relationships that are robust and able to maintain integ-
rity despite anticipated changes in environmental conditions (Poff,
2017; Mazor et al., 2018).

Our hypotheses that flow alteration-ecology relationships would
be stronger during the drought year and that fish assemblages would
show the strongest flow-alteration relationships, had much less sup-
port, and showed year- and taxa-dependent caveats. Relationship
strength, as indicated by cumulative percent variance explained in
Axes 1 and 2 of the RDA's, was greater during the drought year for
benthic macroinvertebrate assemblages, but weaker for fish and
crayfish, with the pattern reversed during the flood year. Fish assem-
blage relationships were stronger than macroinvertebrates and
lower than crayfish during the flood year, but weaker than all other
groups during the drought year. Overall, relationships were slightly
stronger during the drought year than the flood year, and relation-
ships were actually weaker in fish than in the macroinvertebrate
assemblages.

With respect to which categories of alteration metrics were
most important, the prominence of magnitude and frequency is of
particular interest given that regional e-flows studies have sug-
gested that magnitude of flow is an important influence on aquatic
communities (Monk et al., 2006; Armstrong et al., 2011; Kendy
et al., 2012), while others have found that frequency of floods
may be one of the most important determinants of community
structure in streams (Dodds et al., 2004; Matthews et al., 2013;
Matthews et al., 2014). Anthropogenic alteration of streamflow
magnitudes is a widespread phenomenon; in an assessment of
2888 streamflow monitoring sites throughout the conterminous
U.S., Carlisle et al. (2010) found that streamflowmagnitude was al-
tered at 86% of assessed streams, and that diminished magnitudes
were better predictors of biological integrity in both fish and mac-
roinvertebrate assemblages than other physical and chemical co-
variates. Reduction in high flow frequencies has also been linked
to a decrease in the ecological integrity of river systems (Ward
and Stanford, 1995). The general trend in our study area in both
magnitude and frequency metrics was towards reduction relative
to expected values.

Compared to alteration of high and average flows, alteration of
low flows appeared to be a considerably less important influence
on biota in Groundwater Flashy streams in the Ozark Highlands;
only two of 32 important metrics across years and assemblages
were low flow related. Although both floods and droughts act as
major hydrologic disturbances in stream ecosystems and can
exert significant influence on biota (Lake, 2000), the alteration of
low-flow hydrology has been relatively less studied than that of
high flows (Rolls et al., 2012). In the present study, we focused on
Groundwater Flashy streams, one of the most common flow re-
gimes in the Ozark Highlands (Leasure et al., 2016), but it is likely
that in other flow regimes, alteration of low flows may be more im-
portant. Different natural flow regimes within the same region may
be more or less susceptible to particular forms of flow alteration,
which is the reason that flow regime classification is a crucial step
in the assessment of hydrologic alteration (Poff et al., 2010). The
seven distinct flow regimes in the Ozark Highlands can be divided
into three broad categories – groundwater, runoff, and intermit-
tent streams (Leasure et al., 2016). Runoff and intermittent flow re-
gimes are categorized by more frequent low flow spells and lower
base flows than groundwater streams; it may be that low flowmet-
rics play a greater role in the life history of biota in these streams
and therefore alteration of those metrics would have greater

impact. Poff (1992) suggested that perennial runoff and intermit-
tent streams may be more strongly affected by alteration of low
flows and groundwater streams more affected by alteration of
high flows; the latter at least appears to be reflected in the present
study.

RTH macroinvertebrate assemblages differed in key ways from
the others in this study. This was the only group in which magni-
tude was not the most important category of flow alteration metric.
It was also the only assemblage in which no flow alteration cate-
gory was clearly more prominent than the others. Predictability
of flooding is thought to be critically important to macroinverte-
brate assemblages. Fritz and Dodds (2005) found that streams
with low flow predictability had consistently lower macroinverte-
brate taxa richness than those with greater predictability. Alter-
ation of the variability in high flow timing (TH2) was also related
to both percent EPT taxa and abundance in 2013. Predictable
timing of floods may be very important in aquatic macroinverte-
brates that rely on life-history adaptations to avoid disturbances
rather than escaping on a per-event basis, particularly taxa that re-
quire gill respiration as juveniles but have an aerial adult stage, e.g.
EPT taxa (Lytle, 2008). In the present study, predictability of
flooding (TA3) was altered towards higher predictability and was
negatively related to all response variables in 2012. Likewise, alter-
ation towards increased variability in high flow timing (TH2) was
positively related to increased percent EPT taxa and abundance in
2013, but it is important to note that TH2 alteration ranges from
strongly negative to slightly positive so percent EPT and abundance
increased with less altered (i.e., more normal) TH2. Therefore, in
both cases percent EPT was reduced with altered flow timing. It ap-
pears that alteration of flow timing, regardless of direction, may
negatively influence RTH macroinvertebrate assemblages in these
systems.

Unlike RTH assemblages, QMH assemblages showed a pattern
consistent with fish and crayfish assemblages with respect to the
prominence of magnitude alteration metrics. Interestingly, QMH
assemblages show more of an affinity with fish than crayfish as-
semblages in terms of the importance of high flow frequency
(FH). Relationships between response variables in the two years
were more consistent in QMH than RTH samples. It is possible
that the inclusion of pool and run habitats, which act as refuges
for macroinvertebrates during summer drying (Chester and
Robson, 2011), may have somewhat ameliorated the effects of
drought in 2012 in QMH compared to RTH samples. Temporal var-
iation in relationships was also apparent in QMH assemblages,
however, as no individual flow alteration metrics were significant
in both years. General trends among QMH macroinvertebrate as-
semblages in the region include reduction of important metrics re-
lating to magnitude and variability in average and high flows, as
well as frequency and duration of high flows. These may have a va-
riety of effects on QMH macroinvertebrate assemblages in the re-
gion; in a few cases, some trends may actually offset each other.
For example, decreasing magnitude of average flows (MA12) may
lead to a decrease in richness which could be somewhat amelio-
rated by the trend towards decreasing flood frequency (FH11)
(Fig. 3). Examining synergies and indirect effects of flow alteration
on ecosystem structure and function could be a fruitful avenue for
future research.

It should be noted that care should be taken in interpreting the
flow alteration-ecology relationships because flow can be negatively
or positively altered or unaltered. Therefore, negative alteration can
be positively correlated with a response variable. For example, in
Fig. 2 the alteration of FH3 is positively related to Taxa Richness
and negatively related to %Chironomidae, but FH3 is negatively al-
tered and high FH3 values are near normal (i.e., FH3= 0). Therefore,
Taxa Richness is greater and %Chironomidae is reduced when FH3 is
near normal.
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Magnitude alteration was the most important category in
both crayfish and fish assemblages. The two strongly differ in
one important way, however – the lack of any important fre-
quency alteration metrics in crayfish assemblages. The ability of
crayfish species in the region to more fully utilize the hyporheic
zone during dry periods (DiStefano et al., 2009; Larson et al.,
2009) may make them less dependent on frequent high flow
events than fish assemblages; this may lessen the impact that al-
teration of flood frequency has on them. MA3, variability in daily
flows, was a consistently important metric in crayfish assem-
blages in the region, as it was selected in both 2012 and 2013
despite a lack of overlap between sites. The relationship be-
tween alteration of flow variability and density was similar to
that observed in fish assemblages in this study, i.e. the relation-
ship between fish density and MA36 in 2012, and is also sup-
ported by previous studies of flow variability and fish density
(Craven et al., 2010).

In fish assemblages, the association between richness and diver-
sity and alteration of variability in both average flow magnitude
(MA22 and MA36) and high flow frequency, (FH2) is supported by
studies relating hydrologic variation to North American stream
fishes (Ward, 1998; Niu et al., 2012, but see McGarvey, 2014). The
trend towards reduction of these metrics in our study area could be
associated with an overall decline in richness and diversity of stream
fishes in the region. While previous studies have suggested that
aquatic biodiversity is often lower in modified or disturbed streams
than in those with relatively intact natural flow regimes (Ward and
Stanford, 1995; Gehrke et al., 1999), it has been an ongoing challenge
for stream ecologists to unravel the direct effects of flow alteration
from multiple associated stressors that often accompany develop-
ment in watersheds, e.g. land-use factors or declining water quality
(Bunn and Arthington, 2002). Our study provides evidence that al-
teration of specific flow metrics can influence richness and diversity
in stream biota.

Overall, our results show the importance of magnitude and high
flow alteration to stream assemblages in these systems. However, pat-
terns related to alteration of specific flow metrics between years or be-
tween taxa are less obvious. It is possible that redundancy between
tested flow metrics used to explain similar ecological processes may
be responsible for lack of patterns with specific flowmetrics. Future re-
search that builds on established flow alteration-biological response re-
lationships in a way that specifically elucidates functional links would
be worthwhile.

Another caveat to consider is that, while relationships appeared
to vary between years, our ability to detect these relationships may
have varied as well based on the very different sampling conditions
between drought and flood years. Detection probability of freshwa-
ter fish can vary strongly between samples taken at different flow
magnitudes, and this may influence inferences based on fish
community-flow relationships (Pregler et al., 2015; Gwinn et al.,
2016). Similar factors may affect detection probability in benthic
macroinvertebrate assemblages (Meador et al., 2011; Wisniewski
et al., 2013). Furthermore, while hydrology plays a major role in
structuring aquatic assemblages, it is heavily interrelated to many
other factors, including geomorphology, land-use, andwater quality;
the ecological effects of hydrologic alteration are best examined
within the context of this suite of factors (Poff et al., 2006;
McManamay and Frimpong, 2015; Lynch et al., 2018). Finally,
while we examined flow alteration-ecology relationships in a pre-
dominant flow regime (Groundwater Flashy streams) in the Ozark
Highlands, these relationships may strongly differ in other flow re-
gimes even within the same ecoregion (Poff, 1992; Poff et al., 2010;
Leasure et al., 2016). Future studies of flow alteration-ecology rela-
tionships focused on other flow regimes would help to form a more
complete picture of the impact of hydrologic alteration on stream
communities.

5. Conclusions

Flow alteration appears to be an important influence on commu-
nity structure in Groundwater Flashy streams in the Ozark High-
lands. The most important categories of alteration influencing
stream biota were MA, FH, MH, and DH. The fact that three of
these categories were high flow-related suggests the overall impor-
tance of high flows as a determinant of community structure and
composition in these systems. Of the 32 important metrics across
years and assemblages, 19 were significantly altered relative to ex-
pected values. General patterns, such as the importance of magni-
tude and high flow alteration, were apparent across assemblages
and may be useful to managers and stakeholders attempting to con-
serve freshwater ecosystems in the region. However, key differ-
ences between taxonomic groups, as well as temporal variation in
relationships, suggest that a complex suite of flow metrics should
be considered for effective conservation of stream communities re-
lated to flow alteration. Environmental flows concepts are increas-
ingly finding traction in regions across the world (Belmar et al.,
2011; Buchanan et al., 2013; Rolls and Arthington, 2014; O'Brien
et al., 2017; Zhang et al., 2012), but could be enhanced by a better
understanding of complexity with respect to interactions between
temporal variation, disturbance, and taxa-dependent response
differences.
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Appendix A

Predictor variable Spatial extent

Average base flow index W, P
Average groundwater recharge W, P
Maximum elevation W
Maximum slope W
Watershed ratio W
Watershed area W
Average stream slope W, P
Density of upstream confluences W
Count of upstream confluences W
Spring density W
Spring count W
Percent coverage of shale W
Percent coverage of dolostone W
Coverage of shale W
Coverage of dolostone W
Percent coverage of Ozark Plateau aquifer W
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(continued)

Predictor variable Spatial extent

Coverage of Ozark Plateau aquifer W
Average bulk density W, P
Average soil clay content W, P
Subsurface flow contact time index W, P
Average soil water capacity W, P
Average water table depth W, P
Average hydrologic group B W, P
Average hydrologic group C W, P
Average hydrologic group D W, P
Infiltration-excess overland flow rates W, P
Average soil K factor W, P
Average soil organic matter W, P
Average overland flow W, P
Snow percent of total precipitation W, P
Average soil fraction b 0.74 mm W, P
Average soil fraction b 2 mm W, P
Average soil fraction b 5 mm W, P
Average soil permeability W, P
Average annual potential evapotranspiration W, P
Average rainfall and runoff factor W, P
Average rock depth W, P
Average percent sand W, P
Average percent silt W, P
Dominant surface geology W, P
Average topographic wetness index W, P
Percent coverage of limestone W
Percent coverage of sand W
Percent coverage of sandstone W
Coverage of limestone W
Coverage of sand W
Coverage of sandstone W
Canopy cover W
Average elevation W, P
Elevation range W
Average slope W, P
Isothermality W, P
Maximum temperature of warmest month W, P
Average diurnal temperature range W, P
Average temperature coldest quarter W, P
Average temperature driest quarter W, P
Average temperature warmest quarter W, P
Average temperature wettest quarter W, P
Minimum temperature coldest month W, P
Precipitation coldest quarter W, P
Precipitation driest month W, P
Precipitation driest quarter W, P
Precipitation January W, P
Precipitation February W, P
Precipitation March W, P
Precipitation April W, P
Precipitation May W, P
Precipitation June W, P
Precipitation July W, P
Precipitation August W, P
Precipitation September W, P
Precipitation October W, P
Precipitation November W, P
Precipitation December W, P
Precipitation seasonality W, P
Precipitation warmest quarter W, P
Precipitation wettest month W, P
Precipitation wettest quarter W, P
Temperature annual range W, P
Temperature seasonality W, P
Average temperature January W, P
Average temperature February W, P
Average temperature March W, P
Average temperature April W, P
Average temperature May W, P
Average temperature June W, P
Average temperature July W, P
Average temperature August W, P
Average temperature September W, P
Average temperature October W, P
Average temperature November W, P
Average temperature December W, P

(continued)

Predictor variable Spatial extent

Percent coverage of chert W
Percent coverage of alluvial terrace W
Percent coverage of alluvium W
Coverage of chert W
Coverage of alluvial terrace W
Coverage of alluvium W
Dominant geology W, P
Coverage of forest in 1992 W
Coverage of wetlands in 1992 W
Percent coverage of forest in 1992 W
Percent coverage of wetlands in 1992 W
Percent coverage of deciduous forests in 1992 W
Percent coverage of evergreen forests in 1992 W
Percent coverage of mixed forests in 1992 W
Coverage of deciduous forests in 1992 W
Coverage of evergreen forests in 1992 W
Coverage of mixed forests in 1992 W
Dominant aspect W, P
Average annual temperature W, P
Annual precipitation W, P
Maximum temperature January W, P
Maximum temperature February W, P
Maximum temperature March W, P
Maximum temperature April W, P
Maximum temperature May W, P
Maximum temperature June W, P
Maximum temperature July W, P
Maximum temperature August W, P
Maximum temperature September W, P
Maximum temperature October W, P
Maximum temperature November W, P
Maximum temperature December W, P
Minimum temperature January W, P
Minimum temperature February W, P
Minimum temperature March W, P
Minimum temperature April W, P
Minimum temperature May W, P
Minimum temperature June W, P
Minimum temperature July W, P
Minimum temperature August W, P
Minimum temperature September W, P
Minimum temperature October W, P
Minimum temperature November W, P
Minimum temperature December W, P
Minimum winter temperature W, P
Dominant aquifer W, P
Average annual runoff W, P
Average runoff January W, P
Average runoff February W, P
Average runoff March W, P
Average runoff April W, P
Average runoff May W, P
Average runoff June W, P
Average runoff July W, P
Average runoff August W, P
Average runoff September W, P
Average runoff October W, P
Average runoff November W, P
Average runoff December W, P
Coverage of red clay W
Coverage of cherty red clay W
Coverage of loam W
Coverage of sandy and stony colluvium W
Coverage of floodplain and alluvium gravel terraces W
Percent coverage of red clay W
Percent coverage of cherty red clay W
Percent coverage of loam W
Percent coverage of sandy and stony colluvium W
Percent coverage of floodplain and alluvium gravel terraces W
Percent coverage of Edwards-Trinity aquifer W
Coverage of Edwards-Trinity aquifer W
Stream density W
Stream length W
Minimum elevation W
Maximum stream slope W
Strahler stream order P
Shreve stream order P
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Appendix B

Flow
metric

Definition n Unique Shift Bias Bias
(interquartile
range)

Imprecision Imprecision
(interquartile
range)

Absolute
error

Absolute
Error
(interquartile
range)

R2 R2

(interquartile
range)

Root
mean
square
error

Normalized
root mean
square error

MA1 Mean daily flow 64 64 1 −0.07 −0.04 0.37 0.23 0.23 0.15 0.89 0.85 0.49 0.07
MA2 Median daily flow 64 57 1 −0.01 0.00 0.67 0.37 0.34 0.19 0.89 0.81 0.54 0.08
MA3 Coefficient of variation in daily flows 64 64 0 −5.47 −0.09 48.49 0.76 24.53 0.38 0.73 0.62 36.57 0.11
MA4 Coefficient of variation of the logs in daily flows corresponding to the 64 64 1 −0.02 −0.09 0.17 0.64 0.09 0.32 0.76 0.68 0.14 0.12
MA5 Mean daily flows divided by median daily flows 64 60 0 0.22 0.12 1.17 0.64 0.64 0.35 0.50 0.65 1.43 0.11
MA6 Ratio of 10th/90th percentiles in daily flows overall years 55 55 1 0.13 0.04 0.75 0.24 0.42 0.13 0.73 0.87 0.93 0.13
MA7 Ratio of 20th/80th percentiles in daily flows overall years 61 60 1 0.07 0.04 0.69 0.35 0.35 0.18 0.68 0.82 0.68 0.12
MA8 Ratio of 25th/75th percentiles in daily flows overall years 64 63 1 0.06 0.04 0.45 0.32 0.22 0.16 0.65 0.84 0.54 0.13
MA9 Ranges in daily flows (MA6) divided by median daily flows 64 60 0 0.43 0.10 2.33 0.53 1.13 0.26 0.45 0.74 3.87 0.10
MA10 Ranges in daily flows (MA7) divided by median daily flows 64 61 0 0.18 0.09 1.06 0.53 0.57 0.29 0.49 0.71 1.49 0.10
MA11 Ranges in daily flows (MA8) divided by median daily flows 64 59 0 0.10 0.07 0.76 0.53 0.40 0.28 0.52 0.72 0.93 0.11
MA12 Mean monthly flow for January 64 64 1 −0.10 −0.07 0.51 0.34 0.26 0.17 0.85 0.83 0.57 0.08
MA13 Mean monthly flow for February 64 64 1 −0.09 −0.06 0.48 0.31 0.25 0.16 0.87 0.84 0.54 0.08
MA14 Mean monthly flow for March 64 64 0 47.42 0.07 262.62 0.38 122.23 0.18 0.73 0.82 455.00 0.10
MA15 Mean monthly flow for April 64 64 1 −0.08 −0.05 0.38 0.25 0.21 0.14 0.90 0.86 0.47 0.07
MA16 Mean monthly flow for May 64 64 1 −0.12 −0.08 0.42 0.26 0.23 0.14 0.90 0.86 0.48 0.07
MA17 Mean monthly flow for June 64 64 0 30.07 0.09 86.92 0.25 60.73 0.17 0.78 0.83 304.41 0.08
MA18 Mean monthly flow for July 64 64 1 −0.07 −0.03 0.66 0.34 0.34 0.17 0.88 0.83 0.54 0.08
MA19 Mean monthly flow for August 64 64 1 0.01 0.01 0.61 0.33 0.29 0.16 0.90 0.84 0.53 0.07
MA20 Mean monthly flow for September 64 64 1 −0.03 −0.02 0.44 0.27 0.25 0.15 0.86 0.85 0.54 0.08
MA21 Mean monthly flow for October 64 64 1 −0.08 −0.05 0.45 0.27 0.26 0.15 0.84 0.85 0.60 0.09
MA22 Mean monthly flow for November 64 64 1 −0.06 −0.04 0.71 0.45 0.36 0.22 0.84 0.78 0.59 0.09
MA23 Mean monthly flow for December 64 64 1 −0.05 −0.03 0.63 0.41 0.33 0.22 0.84 0.78 0.59 0.09
MA24 Coefficient of variation in monthly flows for January 64 46 0 −0.08 0.00 24.64 0.52 12.17 0.26 0.67 0.74 20.39 0.14
MA25 Coefficient of variation in monthly flows for February 64 47 0 0.45 0.01 20.26 0.60 10.52 0.31 0.65 0.69 16.74 0.12
MA26 Coefficient of variation in monthly flows for March 64 46 0 1.25 0.03 20.67 0.54 10.69 0.28 0.68 0.72 16.32 0.14
MA27 Coefficient of variation in monthly flows for April 64 47 0 0.03 0.00 23.84 0.65 12.05 0.33 0.71 0.67 16.69 0.13
MA28 Coefficient of variation in monthly flows for May 64 53 0 1.73 0.04 23.53 0.49 11.75 0.24 0.75 0.76 19.58 0.12
MA29 Coefficient of variation in monthly flows for June 64 59 0 3.94 0.06 21.74 0.34 11.85 0.18 0.80 0.82 19.00 0.12
MA30 Coefficient of variation in monthly flows for July 64 54 0 5.23 0.07 26.17 0.34 17.29 0.22 0.72 0.78 33.25 0.11
MA31 Coefficient of variation in monthly flows for August 64 58 0 6.74 0.08 37.92 0.46 21.78 0.27 0.65 0.73 41.52 0.12
MA32 Coefficient of variation in monthly flows for September 64 55 0 4.98 0.05 36.49 0.40 19.53 0.21 0.69 0.79 37.43 0.13
MA33 Coefficient of variation in monthly flows for October 64 54 1 −0.03 −0.03 0.34 0.35 0.18 0.18 0.79 0.82 0.33 0.12
MA34 Coefficient of variation in monthly flows for November 64 49 1 −0.02 −0.03 0.21 0.36 0.11 0.18 0.81 0.82 0.20 0.10
MA35 Coefficient of variation in monthly flows for December 64 53 0 −0.78 −0.01 20.40 0.32 9.85 0.16 0.74 0.84 20.59 0.11
MA36 Variability in monthly flows divided by median monthly flows, where variability is

calculated as range
64 63 0 1.01 0.14 4.15 0.57 2.31 0.32 0.55 0.68 5.20 0.11

MA37 Variability in monthly flows divided by median monthly flows, where variability is
calculated as interquartile

64 56 0 0.03 0.04 0.62 0.71 0.30 0.34 0.51 0.66 0.68 0.10

MA38 Variability in monthly flows divided by median monthly flows, where variability is
calculated as 90th–10th percentile

64 61 1 −0.04 −0.12 0.23 0.67 0.10 0.29 0.63 0.71 0.19 0.11

MA39 Coefficient of variation in mean monthly flows 64 63 0 0.18 0.01 16.61 0.81 7.64 0.37 0.62 0.63 12.54 0.13
MA40 (Mean monthly flow—median monthly flow)/median monthly flow 64 51 1 −0.01 −0.02 0.16 0.64 0.08 0.34 0.55 0.66 0.16 0.11
MA41 Mean annual flow divided by catchment area 64 53 1 0.00 −0.01 0.07 0.33 0.04 0.19 0.71 0.81 0.09 0.10
MA42 Variability in annual flows divided by median annual flows, where variability is

calculated as range
64 46 0 −0.05 −0.09 0.51 1.00 0.25 0.49 0.38 0.51 0.35 0.15

MA43 Variability in annual flows divided by median annual flows, where variability is
calculated as interquartile

64 38 1 0.00 −0.04 0.10 0.93 0.05 0.48 0.35 0.52 0.09 0.18

MA44 Variability in annual flows divided by median annual flows, where variability is
calculated as 90th–10th percentile

64 45 1 0.00 0.01 0.12 0.84 0.06 0.43 0.45 0.57 0.10 0.15

MA45 (Mean annual flow—median annual flow)/median annual flow 64 21 0 0.00 0.05 0.06 1.14 0.03 0.59 0.23 0.41 0.06 0.15
ML1 Mean minimummonthly flow for January 64 64 1 −0.02 −0.02 0.64 0.39 0.32 0.20 0.90 0.80 0.51 0.07
ML2 Mean minimummonthly flow for February 64 64 1 −0.04 −0.03 0.57 0.34 0.31 0.18 0.90 0.82 0.50 0.07
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ML3 Mean minimummonthly flow for March 64 64 0 17.87 0.08 66.64 0.31 34.52 0.16 0.81 0.84 180.01 0.08
ML4 Mean minimummonthly flow for April 64 64 0 25.87 0.10 74.42 0.29 40.73 0.16 0.81 0.84 204.79 0.08
ML5 Mean minimummonthly flow for May 64 63 1 0.00 0.00 0.55 0.27 0.30 0.15 0.92 0.85 0.49 0.07
ML6 Mean minimummonthly flow for June 64 64 1 −0.05 −0.02 0.64 0.27 0.33 0.14 0.91 0.86 0.56 0.08
ML7 Mean minimummonthly flow for July 64 62 1 0.03 0.01 1.02 0.41 0.44 0.18 0.89 0.82 0.63 0.09
ML8 Mean minimummonthly flow for August 64 63 1 0.04 0.02 0.95 0.38 0.47 0.19 0.89 0.81 0.67 0.09
ML9 Mean minimummonthly flow for September 64 64 1 0.12 0.05 0.95 0.40 0.46 0.19 0.88 0.81 0.66 0.09
ML10 Mean minimummonthly flow for October 64 63 1 0.11 0.05 0.84 0.37 0.42 0.18 0.88 0.82 0.61 0.09
ML11 Mean minimummonthly flow for November 64 64 1 0.02 0.01 0.73 0.41 0.36 0.20 0.88 0.80 0.57 0.08
ML12 Mean minimummonthly flow for December 64 64 1 0.00 0.00 0.73 0.44 0.35 0.21 0.88 0.79 0.55 0.08
ML13 Coefficient of variation in minimummonthly flows 64 64 0 −0.85 −0.02 18.97 0.42 9.53 0.21 0.66 0.79 19.51 0.15
ML14 Mean of the lowest annual daily flow divided by median annual daily flow

averaged across all years
61 29 0 0.00 0.01 0.06 0.24 0.03 0.12 0.79 0.88 0.09 0.15

ML15 Mean of the lowest annual daily flow divided by mean annual daily flow averaged
across all years

64 21 1 0.00 0.03 0.02 0.22 0.02 0.16 0.78 0.84 0.05 0.14

ML16 Median of the lowest annual daily flows divided by median annual daily flows
averaged across all years

61 26 0 0.01 0.02 0.06 0.25 0.03 0.14 0.77 0.86 0.09 0.15

ML17 Seven-day minimum flow divided by mean annual daily flows averaged across all
years

64 25 1 0.01 0.05 0.03 0.22 0.02 0.15 0.78 0.85 0.05 0.14

ML18 Coefficient of variation in ML17 63 63 1 0.04 0.02 0.39 0.27 0.20 0.14 0.65 0.86 0.49 0.18
ML19 Mean of the ratio of the lowest annual daily flow to the mean annual daily flow

times 100 averaged across all years
64 59 1 0.02 0.01 0.67 0.29 0.34 0.15 0.78 0.85 0.61 0.16

ML20 Ratio of base flow volume to total flow volume 64 36 1 0.00 0.02 0.07 0.55 0.04 0.29 0.81 0.71 0.05 0.11
ML21 Coefficient of variation in annual minimum flows averaged across all years 63 63 0 5.30 0.03 54.01 0.35 27.62 0.18 0.55 0.82 78.27 0.17
ML22 Mean annual minimum flows divided by catchment area 64 21 0 0.01 0.09 0.04 0.44 0.02 0.21 0.71 0.79 0.07 0.13
MH1 Mean of the maximummonthly flows for January 64 64 0 293.63 0.12 988.71 0.40 622.04 0.25 0.67 0.75 1395.83 0.12
MH2 Mean of the maximummonthly flows for February 64 64 0 191.50 0.07 1047.22 0.38 506.52 0.18 0.72 0.82 1400.17 0.11
MH3 Mean of the maximummonthly flows for March 64 64 0 262.33 0.07 1095.46 0.31 687.51 0.20 0.71 0.80 1744.35 0.12
MH4 Mean of the maximummonthly flows for April 64 64 0 437.31 0.12 1201.51 0.33 780.70 0.21 0.73 0.79 1995.83 0.11
MH5 Mean of the maximummonthly flows for May 64 64 0 328.69 0.09 1242.02 0.35 711.69 0.20 0.70 0.80 2066.25 0.12
MH6 Mean of the maximummonthly flows for June 64 64 0 193.09 0.10 844.68 0.42 456.29 0.22 0.66 0.78 1084.08 0.10
MH7 Mean of the maximummonthly flows for July 64 64 1 −0.02 −0.01 0.70 0.47 0.37 0.25 0.79 0.75 0.59 0.10
MH8 Mean of the maximummonthly flows for August 64 64 1 −0.10 −0.05 0.54 0.29 0.29 0.15 0.82 0.85 0.62 0.08
MH9 Mean of the maximummonthly flows for September 64 64 0 125.20 0.14 376.81 0.42 232.67 0.26 0.50 0.74 592.78 0.11
MH10 Mean of the maximummonthly flows for October 64 64 1 −0.11 −0.08 0.74 0.52 0.40 0.28 0.71 0.72 0.79 0.11
MH11 Mean of the maximummonthly flows for November 64 64 1 −0.09 −0.07 0.85 0.63 0.43 0.32 0.77 0.68 0.64 0.10
MH12 Mean of the maximummonthly flows for December 64 64 0 515.04 0.18 1292.24 0.46 737.29 0.26 0.65 0.74 1340.80 0.15
MH13 Coefficient of variation in mean maximummonthly flows 64 63 1 0.01 0.07 0.11 0.73 0.06 0.38 0.39 0.62 0.10 0.16
MH14 Median of the highest annual daily flow divided by the median annual daily flow

averaged across all years
64 62 0 8.46 0.14 38.64 0.64 21.18 0.35 0.60 0.65 42.39 0.14

MH15 Mean of the 1st percentile from the flow duration curve divided by median daily
flow across all years

64 64 0 3.50 0.11 21.94 0.70 11.56 0.37 0.55 0.63 23.19 0.13

MH16 Mean of the 10th percentile from the flow duration curve divided by median daily
flow across all years

64 62 0 0.21 0.05 2.20 0.53 1.14 0.27 0.44 0.73 3.83 0.10

MH17 Mean of the 25th percentile from the flow duration curve divided by median daily
flow across all years

64 54 0 0.09 0.09 0.61 0.55 0.33 0.30 0.49 0.70 0.85 0.11

MH18 Coefficient of variation of logarithmic annual maximum flows 64 60 0 0.36 0.13 1.48 0.56 0.79 0.29 0.45 0.71 1.66 0.18
MH19 Skewness in annual maximum flows 64 54 2.62 0.00 −0.01 0.22 0.98 0.10 0.46 0.05 0.54 0.22 0.19
MH20 Mean annual maximum flows divided by catchment area 64 63 0 1.28 0.05 10.37 0.38 5.18 0.19 0.77 0.81 8.15 0.11
MH21 Mean of the high flow volume (calculated as the area between the hydrograph and

the upper threshold during the high flow event) divided by median annual daily
flow across all years. The upper threshold is defined as median annual flow

64 64 0 13.01 0.12 60.95 0.57 26.49 0.25 0.27 0.75 101.61 0.12

MH22 Mean of the high flow volume (calculated as the area between the hydrograph and
the upper threshold during the high flow event) divided by median annual daily
flow across all years. The upper threshold is defined as 3 times median annual flow

64 64 1 0.00 0.00 0.55 0.71 0.28 0.36 0.62 0.64 0.46 0.12

MH23 Mean of the high flow volume (calculated as the area between the hydrograph and
the upper threshold during the high flow event) divided by median annual daily
flow across all years. The upper threshold is defined as 7 times median annual flow

64 64 0 1.84 0.04 31.77 0.73 16.49 0.38 0.31 0.62 58.49 0.11

MH24 Mean of the high peak flow during the high flow event (defined by the upper 64 63 0 1.93 0.11 12.88 0.72 6.83 0.38 0.56 0.62 12.86 0.16

(continued on next page)
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(continued)

Flow
metric

Definition n Unique Shift Bias Bias
(interquartile
range)

Imprecision Imprecision
(interquartile
range)

Absolute
error

Absolute
Error
(interquartile
range)

R2 R2

(interquartile
range)

Root
mean
square
error

Normalized
root mean
square error

threshold) divided by median annual daily flow. The upper threshold is defined as
median annual flow

MH25 Mean of the high peak flow during the high flow event (defined by the upper
threshold) divided bymedian annual daily flow. The upper threshold is defined as 3
times median annual flow

64 64 0 2.22 0.12 10.41 0.58 6.11 0.34 0.56 0.66 12.64 0.16

MH26 Mean of the high peak flow during the high flow event (defined by the upper
threshold) divided bymedian annual daily flow. The upper threshold is defined as 7
times median annual flow

64 62 1 0.00 0.00 0.33 0.68 0.17 0.34 0.65 0.66 0.27 0.14

MH27 SeeMH24–26, where the upper threshold is defined as the 25th percentile from the
flow duration curve

64 64 0 2.15 0.12 11.42 0.65 6.18 0.35 0.54 0.65 14.04 0.16

FL1 Number of annual occurrences during which the magnitude of flow remains below
a lower threshold. Hydrologic pulses are defined as those periods within a year in
which the flow drops below the 25th percentile (low pulse) of all daily values for
the time period

64 59 1 −0.01 −0.04 0.17 0.60 0.09 0.30 0.40 0.70 0.15 0.19

FL2 Coefficient of variation in FL1 64 64 0 0.26 0.02 9.24 0.76 5.27 0.43 0.58 0.57 7.72 0.14
FL3 Total number of low flow spells (threshold equal to 5% of mean daily flow) divided

by the record length in years
64 51 0 1.17 0.01 28.21 0.28 15.31 0.15 0.71 0.85 27.09 0.16

FH1 See FL1, where the high pulse is defined as the 75th percentile 64 62 1 −0.01 −0.02 0.14 0.48 0.07 0.25 0.70 0.75 0.12 0.12
FH2 Coefficient of variation in FH1 64 64 0 −0.18 −0.02 5.77 0.61 3.15 0.33 0.50 0.67 4.99 0.15
FH3 See FH1, where the upper threshold is defined as 3 times median daily flow, and

the value is represented as an average instead of a tabulated count
64 64 0 −2.06 −0.07 19.38 0.66 9.67 0.33 0.70 0.67 14.59 0.12

FH4 See FH1, where the upper threshold is defined as 7 times median daily flow, and
the value is represented as an average instead of a tabulated count

64 63 0 −0.86 −0.03 13.42 0.54 6.58 0.27 0.67 0.73 11.09 0.11

FH5 Mean number of high flow events per year using an upper threshold of median
flow over all years

64 56 0 −0.10 −0.04 1.34 0.58 0.69 0.30 0.44 0.70 1.17 0.15

FH6 Mean number of high flow events per year using an upper threshold of 3 times
median flow over all years

64 64 0 0.02 0.01 1.61 0.57 0.83 0.30 0.66 0.70 1.38 0.12

FH7 Mean number of high flow events per year using an upper threshold of 7 times
median flow over all years

64 64 0 −0.06 −0.01 1.88 0.44 0.97 0.23 0.76 0.77 1.57 0.12

FH8 See FH5–7, where the 25th percentile is used as the upper threshold 64 62 1 −0.01 −0.02 0.14 0.49 0.07 0.26 0.69 0.74 0.12 0.12
FH9 See FH5–7, where the 75th percentile is used as the upper threshold 64 54 0 0.08 0.05 1.02 0.63 0.51 0.31 0.43 0.69 0.93 0.19
FH10 See FH5–7, where the median of the annual minima is used as the upper threshold 64 51 1 0.05 0.15 0.18 0.60 0.10 0.32 0.32 0.68 0.18 0.17
FH11 Mean number of discrete flood events per year 64 30 1 0.00 0.02 0.07 0.78 0.04 0.38 0.10 0.62 0.06 0.22
DL1 Annual minima of mean of daily discharge 64 61 1 0.13 0.04 1.15 0.40 0.53 0.18 0.88 0.82 0.71 0.10
DL2 Annual minima of 3-day mean of daily discharge 64 60 1 0.14 0.05 0.97 0.34 0.51 0.17 0.88 0.83 0.70 0.10
DL3 Annual minima of 7-day mean of daily discharge 64 63 1 0.13 0.05 1.01 0.35 0.51 0.18 0.88 0.82 0.69 0.10
DL4 Annual minima of 30-day mean of daily discharge 64 62 1 0.07 0.03 0.99 0.38 0.50 0.19 0.88 0.81 0.68 0.09
DL5 Annual minima of 90-day mean of daily discharge 64 64 1 0.06 0.04 0.70 0.42 0.39 0.23 0.89 0.77 0.54 0.08
DL6 Coefficient of variation in mean of daily discharge 61 61 0 5.39 0.04 48.75 0.32 25.22 0.17 0.55 0.83 70.26 0.19
DL7 Coefficient of variation in 3-day mean of daily discharge 61 61 0 7.93 0.05 51.51 0.35 25.23 0.17 0.54 0.83 72.15 0.18
DL8 Coefficient of variation in 7-day mean of daily discharge 62 62 0 8.26 0.06 47.76 0.33 22.69 0.16 0.53 0.84 66.61 0.18
DL9 Coefficient of variation in 30-day mean of daily discharge 63 63 0 4.02 0.03 37.73 0.30 21.96 0.17 0.64 0.83 46.65 0.17
DL10 Coefficient of variation in 90-day mean of daily discharge 64 64 1 −0.04 −0.04 0.38 0.39 0.23 0.23 0.68 0.77 0.34 0.14
DL11 Mean annual 1-day minimum, divided by median flow 64 33 0 0.01 0.02 0.07 0.29 0.04 0.15 0.76 0.85 0.09 0.15
DL12 Mean annual 7-day minimum, divided by median flow 64 30 1 0.01 0.03 0.07 0.30 0.04 0.15 0.75 0.85 0.08 0.16
DL13 Mean annual 30-day minimum, divided by median flow 64 33 0 0.00 0.01 0.11 0.34 0.06 0.17 0.76 0.83 0.10 0.15
DL14 Mean magnitude of flows exceeded 75% of the time (calculated from the flow

duration curve) divided by median daily flow, overall years
64 41 1 0.00 −0.01 0.09 0.35 0.05 0.18 0.73 0.82 0.08 0.16

DL15 Mean magnitude of flows exceeded 90% of the time (calculated from the flow
duration curve) divided by median daily flow, overall years

64 32 0 0.01 0.03 0.10 0.32 0.05 0.16 0.75 0.84 0.10 0.16

DL16 Mean duration of FL1 64 62 1 0.01 0.02 0.24 0.62 0.10 0.27 0.42 0.73 0.19 0.18
DL17 Coefficient of variation in DL16 64 63 0 −1.69 −0.08 15.10 0.75 7.58 0.37 0.16 0.63 12.97 0.20
DL18 Mean annual number of days having zero daily flow 64 32 1 0.02 0.01 0.82 0.31 0.43 0.16 0.62 0.84 0.96 0.21
DL19 Coefficient of variation in DL18 64 33 1 0.06 0.01 1.28 0.25 0.62 0.12 0.62 0.88 1.61 0.27
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DL20 Percentage of all months with zero flow 64 18 1 0.03 0.01 0.57 0.27 0.32 0.15 0.50 0.85 0.86 0.24
DH1 Annual maxima of mean of daily discharge 64 64 1 −0.06 −0.04 0.52 0.41 0.28 0.22 0.85 0.78 0.49 0.09
DH2 Annual maxima of 3-day mean of daily discharge 64 64 0 598.82 0.09 1963.84 0.31 1119.05 0.17 0.69 0.83 3333.27 0.10
DH3 Annual maxima of 7-day mean of daily discharge 64 64 1 −0.10 −0.07 0.49 0.35 0.23 0.17 0.87 0.83 0.51 0.08
DH4 Annual maxima of 30-day mean of daily discharge 64 64 0 103.87 0.07 465.67 0.30 266.65 0.17 0.68 0.83 1040.77 0.10
DH5 Annual maxima of 90-day mean of daily discharge 64 64 0 61.35 0.06 292.05 0.29 152.40 0.15 0.72 0.85 598.47 0.10
DH6 Coefficient of variation in annual maxima of mean daily discharge 64 62 1 0.00 −0.01 0.21 0.78 0.10 0.38 0.18 0.62 0.20 0.18
DH7 Coefficient of variation in annual maxima of 3-day mean of daily discharge 64 62 1 0.01 0.03 0.19 0.79 0.09 0.40 0.21 0.60 0.18 0.15
DH8 Coefficient of variation in annual maxima of 7-day mean of daily discharge 64 63 1 0.01 0.03 0.15 0.60 0.07 0.28 0.30 0.72 0.17 0.14
DH9 Coefficient of variation in annual maxima of 30-day mean of daily discharge 64 64 0 −0.04 0.00 8.15 0.68 4.15 0.35 0.46 0.65 6.66 0.16
DH10 Coefficient of variation in annual maxima of 90-day mean of daily discharge 64 63 0 0.00 0.00 7.07 0.61 3.46 0.30 0.55 0.70 5.68 0.14
DH11 Mean annual 1-day maximum, divided by median flow 64 63 0 11.05 0.12 58.90 0.66 29.43 0.33 0.63 0.67 52.95 0.14
DH12 Mean annual 7-day maximum, divided by median flow 64 64 0 1.51 0.06 18.25 0.78 8.49 0.36 0.50 0.64 18.51 0.12
DH13 Mean annual 30-day maximum, divided by median flow 64 63 0 0.46 0.05 6.44 0.67 3.40 0.36 0.46 0.64 7.41 0.11
DH14 Monthly flow equalled or exceeded 95% of the time divided by mean monthly flow 64 52 0 0.00 0.00 0.35 0.71 0.17 0.36 0.63 0.64 0.27 0.14
DH15 Mean duration of FH1 64 61 0 0.32 0.13 1.67 0.68 0.92 0.38 0.56 0.62 1.23 0.15
DH16 Coefficient of variation in DH15 64 64 1 −0.01 −0.02 0.24 0.61 0.12 0.30 0.56 0.70 0.23 0.13
DH17 See DH15, where the upper threshold is defined as 1 times median flows, and the

value is represented as an average instead of a tabulated count
64 64 1 0.03 0.08 0.22 0.68 0.11 0.35 0.46 0.65 0.18 0.13

DH18 See DH15, where the upper threshold is defined as 3 times median flows, and the
value is represented as an average instead of a tabulated count

64 62 0 0.31 0.09 2.53 0.71 1.35 0.38 0.23 0.62 3.03 0.15

DH19 See DH15, where the upper threshold is defined as 7 times median flows, and the
value is represented as an average instead of a tabulated count

64 59 0 0.09 0.06 1.03 0.70 0.48 0.33 0.44 0.67 1.37 0.10

DH20 See DH17–19, where the upper threshold is defined as the 25th percentile of
median flows

64 62 1 0.01 0.04 0.15 0.48 0.08 0.26 0.70 0.74 0.14 0.12

DH21 See DH17–19, where the upper threshold is defined as the 75th percentile of
median flows

64 61 1 −0.02 −0.05 0.28 0.77 0.14 0.38 0.45 0.62 0.21 0.16

DH22 Mean annual median interval in days between floods overall years 64 63 0 0.27 0.03 9.96 1.14 4.58 0.52 0.02 0.48 7.76 0.19
DH23 Mean annual number of days that flows remain above the flood threshold averaged

across all years
64 39 1 0.01 0.08 0.06 0.74 0.03 0.40 0.39 0.60 0.06 0.14

DH24 Mean annual maximum number of 365 days over all water years during which no
floods occurred over all years

64 64 1 −0.02 −0.09 0.15 0.87 0.08 0.47 0.22 0.53 0.13 0.16

TA1 Constancy 64 33 0 0.00 0.02 0.08 0.37 0.04 0.19 0.82 0.81 0.07 0.14
TA2 Predictability of flow 64 64 0 −0.09 −0.01 7.77 0.44 3.80 0.22 0.79 0.78 6.27 0.13
TA3 Seasonal predictability of flooding 64 25 1 0.00 0.05 0.07 0.78 0.03 0.37 0.03 0.63 0.05 0.26
TL1 Julian date of annual minimum 64 64 1 0.00 −0.03 0.03 0.71 0.02 0.36 0.60 0.64 0.03 0.12
TL2 Variability in Julian date of annual minimum 64 63 0 0.52 0.07 5.79 0.76 2.69 0.35 0.28 0.65 5.84 0.16
TL3 Seasonal predictability of low flow 64 4 0 0.00 0.11 0.01 0.57 0.00 0.31 0.23 0.69 0.01 0.21
TL4 Seasonal predictability of non-low flow 64 5 0 0.00 0.05 0.01 0.81 0.00 0.42 0.56 0.58 0.01 0.16
TH1 Julian date of annual maximum 64 64 1 −0.03 −0.09 0.24 0.63 0.12 0.31 0.22 0.69 0.46 0.13
TH2 Variability in Julian date of annual maximum 64 62 0 −0.10 −0.02 5.54 0.82 2.78 0.41 0.16 0.59 4.78 0.17
TH3 Seasonal predictability of non-flooding 64 32 1 0.02 0.11 0.13 0.80 0.07 0.42 −0.04 0.58 0.10 0.26
RA1 Rise rate 64 64 1 −0.09 −0.06 0.52 0.38 0.28 0.20 0.82 0.80 0.49 0.10
RA2 Variability in rise rate 64 64 1 0.00 0.02 0.15 0.71 0.08 0.39 0.34 0.61 0.13 0.15
RA3 Fall rate 64 64 0 11.69 0.09 44.26 0.36 26.46 0.21 0.68 0.79 64.04 0.12
RA4 Variability in fall rate 64 64 0 −1.13 −0.01 92.60 0.88 47.73 0.45 0.24 0.55 68.41 0.18
RA5 No day rises 64 15 1 0.00 −0.02 0.02 0.80 0.01 0.42 0.63 0.58 0.02 0.11
RA6 Change of flow (increasing flow) 64 37 1 0.01 0.04 0.06 0.41 0.03 0.20 0.73 0.80 0.06 0.11
RA7 Change of flow (decreasing flow) 64 21 0 0.00 0.05 0.02 0.26 0.01 0.15 0.67 0.85 0.03 0.10
RA8 Reversals 64 63 1 0.00 −0.02 0.10 0.86 0.05 0.47 0.19 0.53 0.08 0.19
RA9 Variability in reversals 64 63 0 0.19 0.05 3.82 1.03 1.88 0.50 0.20 0.50 4.14 0.15
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