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Abstract 

 

The aim was to study the effects of zinc and fluoride on remineralisation at plaque-

fluid (PF) concentrations. Artificial carious lesions were created in two acid-gel 

demineralising systems (initially infinitely under-saturated and partially-saturated with 

respect to enamel) giving lesions with different mineral distribution characteristics 

(high- and low-R respectively) but similar integrated mineral-loss values. Lesions of 

both types were assigned to one of four groups and remineralised for 5 d at 37°C. 

Zinc and fluoride were added, based on PF concentrations 1 h post-application, to 

give four treatments; 231 µmol/L zinc (Zn), 10.5 µmol/L fluoride (F), zinc/fluoride 

combined (Zn/F) and an unmodified control solution (non-F/non-Zn). Subsequently 

remineralisation was measured using microradiography. High-R lesions were 

analysed for calcium, phosphorus, fluoride and zinc using electron-probe 

microanalysis (EPMA). All lesions underwent statistically-significant remineralisation. 

For low-R, remineralisation was in the order non-F/non-Zna < Fa < Znab < Zn/Fb, and 

for high-R, Fa < non-F/non-Znb < Znb < Zn/Fc (treatments with the same letter not 

significantly different (p < 0.05)). Qualitatively, remineralisation occurred throughout 

non-F/non-Zn and Zn, predominantly at the surface-zone (F) and within the lesion-

body (Zn/F). EPMA revealed zinc in relatively large amounts in the outer regions (Zn, 

Zn/F). Fluoride was abundant not only at the surface (F) but also in the lesion-body 

(Zn/F). Calcium:phosphate ratios were similar to hydroxyapatite (all). To conclude, 

under static remineralising conditions simulating PF, Zn/F gave significantly greater 

remineralisation than did F, possibly because zinc in Zn/F maintained greater 

surface-zone porosity when compared with F, facilitating greater lesion-body 

remineralisation. 
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Introduction 

 

Zinc is incorporated into many fluoride toothpaste formulations, to reduce calculus, 

as an anti-bacterial agent and to reduce oral malodour [Segreto et al., 1991; Saxton 

et al., 1986; Young et al., 2003]. However, the primary oral health benefit conferred 

by the regular use of fluoride toothpastes is a reduction in caries incidence. Fluoride 

effects this by retarding demineralisation and promoting remineralisation. Therefore 

when additional agents are incorporated into fluoride toothpaste formulations, it is 

important to ensure that the anti-caries efficacy of fluoride is not compromised. 

 

The effects of zinc on the de- and remineralisation dental mineral and hydroxyapatite 

have been studied extensively. It was established long ago that it can reduce enamel 

solubility [Brudevold et al.,1963], and mechanistic studies have shown that it can  

reduce crystal-growth of Brushite (Br), octacalcium phosphate (OCP) and 

hydroxyapatite (HA), even at relatively low concentrations [reviewed by Legeros et 

al., 1999]. Thus it has the potential to influence both demineralisation and 

remineralisation. However, data from in vitro pH-cycling studies incorporating both 

de- and remineralisation have reported no such effects for zinc when delivered from 

fluoride toothpastes [ten Cate, 1993; Laucello et al., 2007]. A reduction in enamel 

demineralisation in situ was reported by ten Cate [1993], but it was concluded that 

this could not be attributed to direct interaction with the enamel substrate, and may 

have been the result of anti-bacterial effects to some extent. In a rat-caries study, 

zinc had no effect on the anti-caries effect of fluoride [Ingram et al., 1984] and 

subsequently, in a three-year caries clinical trial (CCT), the addition of zinc to fluoride 

toothpastes containing 1000, 1500 and 2500 ppm fluoride (as sodium 

monofluorophosphate (SMFP)) the same finding was reported, with zinc having no 

effect on caries, either positive or detrimental, at any of the three fluoride 

concentrations [Stephen et al., 1988]. Ripa et al. [1990] reported that during a further 

CCT, there was no significant difference in anti-caries effectiveness between two 

anti-calculus toothpastes, both of which contained zinc, one containing fluoride as 

SMFP and the other as sodium fluoride (NaF), and an SMFP control toothpaste.   
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Given that zinc can clearly affect both demineralisation and remineralisation, an 

apparent contradiction exists. The aim of the present study was to study the effects 

of zinc and fluoride on remineralisation of demineralised enamel at concentrations 

based on those found in plaque-fluid [Saxton et al., 1986; Newby et al.,unpublished] 

one-hour after application.  Previous studies have shown that the R value (i.e. total 

lesion mineral-loss/depth) of artificially-created lesions can affect the outcome of 

remineralisation studies [Lynch et al., 2007]. Therefore two types of lesion, of 

differing R-value, were employed. 

 

Materials and methods 

 

Preparation of enamel blocks 

Sound enamel blocks (120) were prepared from bovine permanent incisors. The 

central portions of the labial surfaces were abraded to a depth of about 0.5mm using 

wet 600-grit carburundum paper on a rotary grinder (Silfradent model 801, Silfradent, 

Sofia, Italy). The abraded areas were then polished using 9 µm silica (Logitech, 

Glasgow, Scotland). Blocks of approximate dimension 6 x 3 mm were cut laterally 

from this polished area with a water-cooled rotary disc cutter (Microslice 2, Malvern 

Instruments, Malvern, UK) and painted with nail varnish (Number 7, Boots, 

Nottingham, UK), to leave only polished enamel windows ca. 5 x 2mm exposed. After 

drying at room temperature the blocks were mounted in dental wax (Beading Wax, 

Kemdent, Swindon, UK) in the bases of two crystallising dishes. 

 

Lesion formation 

Two types of lesion were created in two different acid-gel demineralising systems, 

based on the initially infinitely-undersaturated (US) and partially-saturated (PS) 

systems described by Lynch and ten Cate [2006a], to create lesions with similar 

mineral-loss (ΔZ) values but different R-values.  

 

In both cases, the blocks were demineralised at pH 4.6 and 37oC in a methyl 

cellulose/lactic acid system (50 mmol/L lactic acid/8% methyl cellulose (aqueous, 

1500cPs, 63 kDa, Sigma Chemicals, UK), pH adjusted with KOH). For PS, calcium 

chloride dihydrate / potassium dihydrogen orthophosphate were added to both the 

acid and gel, at 4.1 / 8.0 mmol/L respectively. US and PS were incubated for 14 and 

18 d respectively.   
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Microradiography 

A thin slice was cut from each tooth block polished on an etched glass plate using 9 

m silica (Logitech, Glasgow, Scotland), to a final thickness, measured accurately, of 

ca. 120 m and mounted on a plastic template along with an aluminium step-wedge. 

Microradiographs of the templates were taken on Kodak Type 1A high-resolution 

plates (Kodak, Rochester, USA) exposed to a CuKα X-ray source operating at 10 mA 

and 20 kV. Exposure time was 35 min and the distance from source to template was 

300 mm. Microradiographs were examined under an optical microscope (Leica, 

Wetzlar, Germany). An image of the central, homogeneous portion of each lesion, 

centred optically, was taken, typically capturing 300 m of the lesion. The integrated 

mineral loss ( Z) was measured using a computerised image-analysis system 

(TMR2006, Inspektor Research Systems, Amsterdam, the Netherlands). Z was the 

product of the lesion depth (LD) in m, and the mean mineral loss, or R value, over 

that depth, relative to sound enamel, which was assumed to be 78% v/v mineral. 

Hence units were vol%. m. LD and maximum mineral density (vol%) in the surface 

zone of each lesion (SZmax) were also calculated and at baseline, the R value (i.e. 

average mineral-loss, where R = Z/LD [Arends et al., 1997]) was calculated to 

confirm that US and PS were different with respect to this parameter. R-values for 

high- and low-R lesions (standard deviations in brackets) were 29.0 vol% (4.07) and 

22.7 vol% (3.17) respectively. 

 

Remineralisation 

Lesions were stratified and assigned to four treatment groups, in both the high- and 

low-R groups (i.e. a total of 8 groups, 9 lesions per group), so that average Z values 

were not significantly different between groups. Lesions were re-mounted on 

individual glass microscope slides in dental wax (as above), one slide per treatment 

group and each slide placed into 150 mL of remineralising solution and incubated for 

5 d at 37C. The remineralising solution, described by Lynch et al. [2007], was 

intended to simulate plaque-fluid, based on the data reported by Gao et al. [2001] 

and Carey et al. [1986]. It comprised 1.0 mmol/L calcium chloride dihydrate, 12.7 

mmol/L potassium dihydrogen orthophosphate, 20 mmol/L HEPES, 130 mmol/L 

potassium chloride, pH 6.58. For both the high- and low-R lesions there were four 

treatment solutions, created by the addition of zinc (as zinc acetate) and / or fluoride 

(as NaF) to the remineralising solutions. These were a non-fluoride/non-zinc control 

(non-F/non-Zn), 231 µmol/L zinc (Zn), 10.5 µmol/L fluoride (F) and 231 µmol/L 

zinc/10.5 µmol/L fluoride combined (Zn/F). The fluoride and zinc concentrations were 



7 
 

based on 1 h post-application values reported by Newby et al. [unpublished] and 

Saxton et al. [1986] respectively. To confirm that the chemicals used to prepare the 

remineralising solutions was not contaminated with either fluoride or zinc, non-F/non-

Zn was analysed in triplicate for fluoride, using an ion-selective electrode (model 

9609BN, Orion Instruments, Beverly, USA), and zinc, using an inductively-coupled 

plasma spectrometer (model 7300 Dual View ICP-OES, Perkin Elmer, USA). The 

concentration of zinc was below limits of detection and the fluoride activity was 461 

(SD = 98.0) nmol/L. 

Subsequent to remineralisation, a further section was taken from each lesion, 

adjacent to the slice taken at baseline, for microradiography, and Z, LD and 

SZmax values calculated. 

  

Calculation of saturation with respect to calcium phosphates                             

The remineralising solutions’ respective degrees of saturation with respect to HA 

(DSHA), octacalcium phosphate (DSOCP), Brushite (DSBR), fluorapatite (FAp) and β-

tricalcium phosphate (TCP) were calculated using a computer program [Larsen, 

2001] as follows. Respective solubility-product constants of 2.51 x 10-59 mol9L-9, 1.58 

x 10-49 mol8L-8, 2.51 x 10-7 mol2L-2, 7.94 x 10-61 mol9L-9 and 3.16 x 10-30 mol5L-5 were 

used and respective DS values calculated were 9.14, 2.18, 1.31, 32.5 (where F was 

added) and 2.54 respectively indicating super-saturation with respect to all of these 

calcium phosphates. 

 

Electron-probe microanalysis 

Quantitative chemical analysis of the lesions was performed by electron probe 

microanalysis (EPMA). Four lesions from each of the high-R treatment groups were 

analysed. A Cameca SX100 fitted with 5 wavelength dispersive x-ray spectrometers 

was used to analyse calcium, phosphorus, fluorine and zinc. Operating conditions 

were 20kV and 10nA. Tooth mineral instability under the electron beam, a result of 

the heating effect which can adversely affect the quantitative analysis, was mitigated 

against by defocusing the beam to a few microns diameter, running at a lower beam 

current and reducing count times to a level that still yielded acceptable statistical 

errors. Samples were embedded in vacuum-compatible epoxy resin in 6mm brass 

tubes, then polished to a 1 µm finish and carbon-coated to neutralise electron charge 

build-up on the sample. Discrete readings were taken at various LD values. All 

elements were analysed using their respective Kα radiation. Peak count times were 

10s for calcium, 20s for phosphorus, 240s for fluorine and zinc. A Durango apatite 
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primary calibration standard was used for calcium, phosphorus and fluorine and for 

zinc, zinc metal was used. 

 

Statistical analysis 

Data were analysed using SAS v8.2 data-analysis software (SAS Institute Inc., Cary, 

USA). Variables analysed:- 

 Change from baseline in mineral loss (ΔΔZ) 

 Change from baseline in lesion depth (ΔLD) 

 Change from baseline in peak density (ΔSZmax) 

Comparisons between different treatment groups were compared using an analysis 

of covariance (ANCOVA), as both lesion type [Lynch et al., 2007] and mineral-loss at 

baseline [Lynch and ten Cate, 2006b] in pre-formed lesions can have a marked effect 

on subsequent remineralisation behaviour. Therefore the ANCOVA model included 

factors for treatment, lesion type (high and low R value) and baseline as covariates.  

An interaction term was also included for treatment*lesion type.  This interaction gave 

rise to the comparisons between the treatments at each lesion type level (low and 

high R value).  A check was also performed on the treatment*baseline interaction 

and in all cases, this term was not statistically significant (p > 0.10) and was excluded 

from the final model. 

The main comparison was the zinc-fluoride combination (Zn/F) versus fluoride alone 

(F).  However, all comparisons were investigated and a Tukey adjustment for multiple 

comparisons was used on the treatment comparisons. 

 

Results 
 

Table 1 gives the results of microradiography and the statistical analysis. Figures 1 

and 2 show average mineral-density profiles before and after remineralisation. One 

lesion each from the low-R/Zn and low-R/F groups, were insufficiently robust for a 

post-treatment section to be taken and polished for microradiography. Statistically-

significant remineralisation was observed for both lesion types and in all treatment 

groups. For F (high- and low-R), remineralisation occurred predominantly at the 

surface-zone and a small but statistically-significant amount of demineralisation 
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occurred in the deeper parts of the lesion body. For Zn/F (high- and low-R), while the 

exaggerated remineralisation of the surface-zone seen in F was absent, large 

amounts of mineral were deposited in the lesion body, giving rise to laminated 

lesions in all cases, although this was much less pronounced in low-R, where it was 

more a broadening of the surface-zone in two of the lesions. For non-F/non-Zn (high- 

and low-R), mineral was deposited throughout the lesion with no obvious preferential 

sites for deposition. For Zn (high- and low-R), remineralisation took place throughout 

lesions, but the deeper parts were remineralised preferentially as indicated by the 

significantly larger reduction in LD when compared with non-F/non-Zn. Some 

lamination was seen in low-R. For F (high- and low-R), remineralisation occurred 

predominantly at the surface-zone and a small but statistically-significant amount of 

demineralisation occurred in the deeper parts of the lesion body. All of these effects 

were more pronounced in the high-R lesions. 

 

Figure 3 shows EPMA-generated elemental distribution profiles overlaid with net 

remineralisation profiles for high-R lesions. For Zn, % (w/w) zinc was highest at the 

lesion surface, diminishing as amount of remineralisation increased. For F, whilst 

fluoride was clearly concentrated in relatively large amounts at the surface, dropping 

rapidly with increasing lesion depth, in Zn/F it was present in similar amounts at the 

surface but even higher amounts deeper into the lesions, at a slightly lesser depth 

than that of maximum remineralisation. Ca:P ratios for the non-F/non-Zn, Zn, F and 

Zn/F treatment groups (SD in brackets) were 2.16 (0.04), 2.16 (0.03), 2.17 (0.03) and 

2.14 (0.09) respectively, consistent with a theoretical value for HA of 2.15. When the 

Ca:Pi ratio was compared with Z as a function of depth, there were no apparent 

trends for any of the treatment groups, as would be expected given the small 

standard deviations. 

 

 

Discussion 
 

The concept of crystal-growth inhibitors not necessarily being incompatible with, and 

potentially enhancing, remineralisation is not new. Featherstone et al. [1981] reported 

that zinc and strontium, in combination with fluoride, had a synergistic effect on 

enhancement of remineralisation. Subsequently, ten Cate et al. [1985] reported 

enhanced lesion-body remineralisation with dipping solutions containing zinc. 

However, the aims of these studies were not to study the effect of zinc alone and the 

presence strontium, capable of affecting enamel de- and remineralisation in its own 
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right [Featherstone et al., 1983], was a confounding factor, and so it cannot be said 

with any certainty precisely what role zinc played. More recently, Fujikawa et al. 

[2008] reported that salivary macromolecules associated with crystal-growth 

inhibition enhanced remineralisation in a similar fashion to that reported here. There 

is a striking similarity between the lesions which had been remineralised in the 

presence of salivary macromolecules and fluoride depicted by those authors and the 

high-R, Zn/F lesions from the present study.  

 

In the present study, static remineralisation conditions with no acidic challenge were 

used in order to attribute any effects observed to the presence or absence of zinc; 

without an acidic challenge, capable of modifying surface-zone porosity, as a 

potentially confounding influence. While 5 days without an acidic challenge of 

sufficient severity to modify surface-zone porosity might be a relatively uncommon 

event in vivo, it serves to demonstrate the potential of crystal-growth inhibitors to 

modify remineralisation in a positive fashion. We used a zinc concentration 

representative of plaque-fluid, rather than whole plaque or saliva, because it is zinc in 

the aqueous phase of plaque, available to react with tooth mineral, which would 

influence remineralisation in vivo. Ideally, a range of zinc concentrations would be 

studied, as the effect of zinc on the various calcium phosphates implicated in 

remineralisation is concentration-dependent [LeGeros et al., 1999]. It is difficult to 

estimate immediate post-application zinc concentrations for plaque-fluid. Although 

pharmacokinetic data for zinc in saliva, following the topical application of zinc from 

toothpastes and mouthrinses, have been reported by several authors [e.g. Harrap et 

al., 1984; Saxton et al., 1986; Gilbert, 1987; Gilbert and Ingram, 1988; Günbay et al., 

1992; Özdemir, 1996], with zinc concentrations reported at several post-application 

times, data for whole plaque tend to be reported only at one or two times [e.g. Afseth 

et al., 1983; Schäfer et al., 2007]. The concentration for plaque-fluid used in the 

present study was the only reported value of which the authors were aware. 

However, immediate post-application concentrations are likely to be much higher, as 

indicated by whole-plaque data [Gilbert and Ingram, 1988], and salivary 

pharmacokinetic data suggest that, many hours after application, the zinc 

concentration in plaque-fluid would fall below the 1 h value used here. A further 

consideration is that zinc is bound to plaque in a similar fashion to calcium [Rose, 

1996] and will presumably be liberated in a similar way during acidogenesis. Further 

work is needed in vitro to determine the effects of zinc and fluoride over a range of 

concentrations and, ideally, also using intra-oral models to simulate more closely the 

clinical situation. 
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The anti-caries effectiveness of zinc-containing fluoride toothpastes has been 

confirmed during caries clinical trials, with both NaF and SMFP as fluoride salts 

[Stephen et al., 1988; Ripa et al., 1990]. At the mechanistic level it is unclear if the 

interaction between Zn, enamel and the two fluoride salts would differ. Here, we used 

NaF as a source of ionic fluoride, since it is currently considered to be the species 

responsible for the anti-caries efficacy of both NaF and SMFP, the latter after 

hydrolysis by oral phosphatases. Given that ionic fluoride concentrations in plaque-

fluid tend to be higher following application of NaF mouthrinses and toothpastes 

when compared to SMFP- or mixed NaF/SMFP ones  [Ekstrand, 1997; Vogel et al., 

2000; Newby et al.,unpublished], the effects seen in the present study may be more 

pronounced when NaF is the fluoride source, rather than SMFP. 

 

Our findings demonstrate that zinc has the potential to enhance fluoride-induced 

remineralisation in early caries lesions. Clinically, this may be beneficial in the case 

where a lesion is arresting. In simple terms, a sub-surface lesion might be described 

as active, in which case it would be expected to progress towards cavitation, or 

arrested, in which case de- and remineralisation have effectively ceased. The rate at 

which a lesion tends towards either of these two extremes may be influenced by a 

number of factors, including fluoride [Featherstone, 2008]. It is accepted that 

exposure to fluoride may arrest lesions but that the sub-surface region will likely 

remain hypo-mineralised, as a highly mineralised surface-zone, a characteristic of 

arrested lesions, acts as a barrier to diffusion of ions into the lesion [Larsen and 

Fejerskov, 1989]. If fluoride-induced arrest were delayed by zinc, and surface-zone 

porosity maintained for longer, then this could allow more sub-surface 

remineralisation to take place than would have otherwise been the case, leading to a 

more complete consolidation of lesions. The use of crystal-growth inhibitors such as 

zinc in combination with fluoride may be useful in cases when fluoride is applied 

topically at relatively high concentrations, from toothpastes and gels, and where 

lesion arrest is likely or indeed the aim. Laminations, as seen in the lesions exposed 

to Zn/F, are a natural phenomenon, occurring in between 5 and 22% of ex vivo white-

spot caries lesions, where values have been reported [Kostlan, 1962; Crabb, 1966; 

Silverstone, 1970; Palamara et al., 1986; Driessens et al., 1986; Theuns, 1987]. The 

lamination observed in our Zn/F lesions may be an exaggerated form of this naturally 

occurring structure. A further consideration is that the present study looked at only 

one aspect of the dynamic caries process, i.e. static remineralisation, whereas in 

reality both de- and remineralisation occur alternately. Arends and Christoffersen 
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[1986] concluded that fluoride stabilises the nascent surface-zone, by  inhibiting 

demineralisation and also by promoting growth of enamel crystallites. As zinc can 

also reduce enamel demineralisation [Brudevold et al., 1963], it may enhance this 

stabilisation by increased  inhibition of demineralisation during caries challenges. 

 

Reduced or inhibited remineralisation through surface-zone blocking has been 

demonstrated during mechanistic studies in vitro [Silverstone et al., 1981; ten Cate 

and Duijsters, 1982]. Comparing F with Zn/F, the most likely explanation for the 

enhanced remineralisation in Zn/F is the smaller increase in SZmax during 

remineralisation, with zinc retarding crystal growth at the surface of Zn/F lesions, 

facilitating ingress of mineral ions. The deeper penetration of fluoride into the Zn/F 

lesions is analogous to the findings of ten Cate and Duijsters [1982], who reported 

that a pH-cycling regime with a high cariogenic challenge effected fluoride deposition 

at a greater depth when compared with static remineralisation. In this case, the acidic 

challenge presumably maintained sufficient surface-zone porosity to allow continued 

ingress of fluoride ions. Similarly, Lynch et al. [2006] reported almost complete 

remineralisation at continuous low pH in the presence of much higher fluoride 

concentrations than those used by ten Cate and Duijsters [1982]. Once again, it 

seems likely that low pH facilitated remineralisation by maintaining surface-zone 

porosity. Silverstone et al. [1981] compared remineralising efficiency of solutions with 

different calcium concentrations and reported that when a more 'efficient' 

remineralising solution (i.e. high calcium) was used, remineralisation was limited to 

the surface-zone when compared with the low-calcium solution, which effected 

remineralisation throughout the artificial lesions used. 

 

While it is likely that the presence of zinc affected surface-zone porosity, it is unclear 

why zinc failed to inhibit remineralisation in the lesion bodies of both Zn- and Zn/F-

treated specimens. However, the preferential deposition of mineral in the deeper 

parts of the lesions suggests that Zn maintained porosity and hence mineral ingress. 

The composition of the PF solution and the temperature used were close to 

conditions which will favour deposition of dicalcium phosphate dihydrate (DCPD), an 

hydroxyapatite pre-cursor, and although the zinc concentration in the present study is 

roughly in the middle of the range of concentrations where inhibition of DCPD crystal 

growth has been demonstrated [LeGeros et al., 1999], remineralisation was still 

observed. Possible explanations have been reported by Ingram et al. [1992] and ten 

Cate [1993]. Both are very credible but neither fully explains our findings. Ingram et 

al. [1992] reported that concentrations of calcium similar to those in saliva displaced 
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adsorbed zinc from hydroxyapatite which had been pre-treated with zinc and went 

further to suggest that this might be how zinc reduces calculus formation without 

affecting fluoride-promoted remineralisation. Although the calcium concentration in 

the remineralising solution used in the present study was somewhat lower than that 

used by Ingram et al. [1992], it was applied at the same time as the zinc and at a 

much higher concentration (1 mmol/L vs. 231 µmol/L) so some competition for 

binding would most likely have occurred, mitigating against the potentially deleterious 

effect of zinc on remineralisation. Based on the earlier work of Margolis et al. [1982], 

ten Cate [1993] proposed that not all crystal-growth sites are affected by zinc and 

that in conditions of relatively high super-saturation, as in the present study, 

overgrowth of the inhibited sites can occur, presumably with zinc ultimately 

incorporated into the apatite lattice. If over-growth of inhibited sites had occurred then 

some zinc should have been detected in the remineralised lesion bodies of both Zn- 

and Zn/F-treated specimens, which it was to some extent, although not throughout 

the region of maximum remineralisation. So, while it is not possible to attribute the 

observed trends in remineralisation wholly to either of the mechanisms proposed 

above, it seems entirely plausible that both may have been partially implicated. 

 

Previous studies have shown that the R-value of artificially-created lesions can have 

a marked effect on remineralisation, both in vitro [Lynch et al., 2007] and during intra-

oral studies [Lippert et al., 2011]. Therefore, lesions with different R-values were 

used here. That the overall trends observed in both lesion types were broadly similar, 

but more pronounced in the high-R lesions, may be the result of the higher SZmax 

value at baseline for the latter lesion type, resulting in retarded diffusion of ions into 

the low-R lesions [Silverstone et al., 1981; ten Cate and Duijsters., 1982]. In 

specimens exposed to Zn/F, the observation that lesion-body remineralisation was 

effected closer to the surface in low-R than in high-R ones may have been the result 

of more rapid depletion of mineral ions in solution in the pores of low-R lesions, with 

a higher specific area than the high-R lesions [Lynch et al., 2007]. Larsen and 

Fejerskov [1989] estimated that uptake of calcium and phosphate by enamel 

crystallites is so rapid that only marginal super-saturation may exist deeper in 

lesions, supporting this proposition. The same proposition may explain the 

deleterious effect of fluoride in high-R lesions, with a slower surface-blocking effect 

allowing remineralisation to continue for longer than in low-R ones. The small but 

significant amount of demineralisation observed in the lesion bodies of F, in both low- 

and high-R cases, may have been the result of so-called Ostwald-ripening of enamel 

in the surface-zone. Assuming that at some point remineralisation had slowed 
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considerably or ceased, and stagnation conditions prevailed within the lesion, the 

larger, more thermodynamically-stable crystallites in the surface-zone [Silverstone, 

1983] may have gained mineral at the expense of crystallites in the lesion body. It 

has also been proposed that in the presence of fluoride, mineral is drawn away from 

the lesion pores during surface-zone remineralisation [ten Cate and Loveren, 1999]. 

A reduction in pH concomitant with surface-zone remineralisation may have occurred 

leading to demineralisation of the lesion body and, potentially, all of these 

mechanisms may have played a part.  

 

The finding that in high-R lesions fluoride concentrations towards the surface of Zn/F-

treated specimens were around double those seen at the surface of those exposed 

to F alone is intriguing. It may reflect relative rates of remineralisation in Zn/F- and F-

treated lesions, with a reduced rate in the latter following surface-blocking and hence 

less time for deposition of F onto and into the lesion. A similar trend was seen in zinc 

concentrations, but here a more likely explanation is that substantially more 

remineralisation occurred on exposure to Zn/F, leading to greater Zn incorporation.  

 

In conclusion, under conditions optimised for net remineralisation, zinc and fluoride 

combined, at concentrations based on those found in plaque-fluid 1 h after 

application, gave significantly greater remineralisation than did fluoride alone. The 

most likely explanation is that zinc maintained surface-zone porosity to ingress of 

mineral ions and thus enhanced lesion-body remineralisation. 
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Legends 

 

Table 1: Results of microradiographic analysis. Baseline data are denoted by suffix 

(base) in the first three columns and means-adjusted changes from baseline are 

given in the following columns. Means with the same letter were not significantly 

different (ANCOVA, p < 0.05). Asterisk denotes a significant change from baseline. 

Standard errors are given in brackets. 

 

Fig. 1: Mean mineral density profiles for high-R lesions. Dashed line = baseline, solid 

line = post-treatment. For clarity, standard deviations are given at 10 μm intervals. 

 

Fig. 2: Mean mineral density profiles for low-R lesions. Dashed line = baseline, solid 

line = post-treatment. For clarity, standard deviations are given at 10 μm intervals. 

 

Fig. 3: elemental amounts (solid lines) vs remineralisation (dashed lines) for high-R 

lesions. 
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Lesion 
type 

 
treatment 

 
ΔZ(base) 
/vol%.μm 

 
SZmax(base) 
/vol% 

 
LD(base) 
/μm 

 
ΔΔZ 
/vol% 

 
ΔSZmax 
/vol% 

 
ΔLD 
/μm 
 

 
 
 
 
 
 
 
High-R 

 
Non-
F/non-Zn 
 
 

 
2280 
(83.8) 
 

 
84.2 (4.70) 

 
39.4  
(1.90) 

 
729 
(63.5)b* 
 

 
12.6 
(5.00)a* 

 
10.9 
(2.0)b* 

 
Zn 

 
2330 
(95.5) 
 

 
78.8 (3.10) 

 
35.3  
(1.10) 

 
790 
(63.5)b* 
 

 
28.8 
(5.30)a* 

 
-0.630 
(2.10)a 

 
 
F 

 
2420 
(101) 
 

 
86.6 (5.10) 

 
35.8  
(2.50) 

 
380.5 
(64.1)a* 
 

 
17.8 
(5.00)a* 

 
17.9 
(2.10)b* 

 
Zn/F 

 
2472.5 
(92.0) 
 

 
81.6 (2.60) 

 
32.9  
(2.30) 

 
1320 
(64.7)c* 
 

 
26.7 
(5.10)a* 

 
4.70 
(2.20)ab* 

 
 
 
 
 
 
 
Low-R 

 
Non-
F/non-Zn 
 
 

 
2170 
(159) 
 

 
98.1 (4.00) 

 
52.2  
(1.90) 

 
471 
(64.2)a* 
 

 
-3.60 
(5.10)ab 

 
16.7 
(2.30)a* 

 
Zn 

 
2020 
(103) 
 

 
94.5 (3.20) 

 
53.2  
(2.00) 

 
711 
(70.4)ab* 
 

 
-1.0 
(5.30)ab 

 

 
13.0 
(2.40)a* 

 
 
F 

 
2310 
(88.0) 
 

 
94.3 (6.30) 

 
42.5  
(2.70) 

 
410 
(67.4)a* 

 

 
-12.9 
(5.30)a* 

 
22.4 
(2.00)a* 

 
Zn/F 

 
2380 
(145) 
 

 
105 (4.00) 

 
48.8  
(2.00) 

 
833 
(63.8)b* 
 

 
10.5 
(5.50)b 

 
16.9 
(2.10)a* 
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Label: change non-F to non-F/non-Zn (2x) 
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