1,993 research outputs found

    The Impact of Olive Oil and Mediterranean Diet on the Prevention of Cardiovascular Diseases

    Get PDF
    The Mediterranean diet has a lot of health benefits but especially because it lowers the incidence of cardiovascular diseases. It has been shown that food components, certain nutrients and the pattern of the diet lowers the risk of several diseases such as diabetes, certain cancers, obesity, respiratory disorders, mental health and cognitive decline, bone diseases (osteoarthritis), healthy aging and quality of life among more others. It has been concluded from studying the mechanism responsible for lowering these risks that food combinations, food nutrients, presence of non-nutritive substances, lifestyles habits and the cooking techniques all together make the Mediterranean dietary pattern into a tool that can not only prevent but can also be used as a way of treatment for these medical ailments. As part of the essential dietary fat, consumption of extra virgin olive oil is the main feature of Mediterranean diet. Olive oil is noted to have anti-bacterial characteristics, involved in improving the endothelial function in young females, and is hypothesized to have epigenetic effects interplay offering protection from cancers due to the presence of beneficial monounsaturated fats. The presence of antioxidants contributes to the inflammation protecting properties of the olive oil. Olive oil has high quantities of antioxidants and offers numerous benefits for cardiovascular health, such as protection of LDL from oxidation and lowering of the high blood pressure as well as offers protection from diabetes mellitus. The Mediterranean diet and the Olive oil consumption also have a fundamental impact in secondary prevention, such as in patients with atrial fibrillation that underwent catheter ablation

    Assembly of the Inner Tracker Silicon Microstrip Modules

    Get PDF
    This note describes the organization of the mechanical assembly of the nearly 4000 silicon microstrip modules that were constructed in Italy for the Inner Tracker of the CMS experiment. The customization and the calibration of the robotic system adopted by the CMS Tracker community, starting from a general pilot project realized at CERN, is described. The step-by-step assembly procedure is illustrated in detail. Finally, the results for the mechanical precision of all assembled modules are reported

    Study of radiation damage and substrate resistivity effects from beam test of silicon microstrip detectors using LHC readout electronics

    Get PDF
    We present the beam test results of single-sided silicon microstrip detectors, with different substrate resistivities. The effects of radiation damage are studied for a detector irradiated to a fluence of 2.4 multiplied by 10**1**4 n/cm**2. The detectors are read out with the APV6 chip, which is compatible with the 40 MHz LHC clock. The performance of different detectors and readout modes are studied in terms of signal-to-noise ratio and efficiency

    Continuous venovenous hemodiafiltration with a low citrate dose regional anticoagulation protocol and a phosphate-containing solution: effects on acid–base status and phosphate supplementation needs

    Get PDF
    BACKGROUND: Recent guidelines suggest the adoption of regional citrate anticoagulation (RCA) as first choice CRRT anticoagulation modality in patients without contraindications for citrate. Regardless of the anticoagulation protocol, hypophosphatemia represents a potential drawback of CRRT which could be prevented by the adoption of phosphate-containing CRRT solutions. The aim was to evaluate the effects on acid--base status and phosphate supplementation needs of a new RCA protocol for Continuous Venovenous Hemodiafiltration (CVVHDF) combining the use of citrate with a phosphate-containing CRRT solution. METHODS: To refine our routine RCA-CVVH protocol (12 mmol/l citrate, HCO3- 32 mmol/l replacement fluid) (protocol A) and to prevent CRRT-related hypophosphatemia, we introduced a new RCA-CVVHDF protocol (protocol B) combining an 18 mmol/l citrate solution with a phosphate-containing dialysate/replacement fluid (HCO3- 30 mmol/l, Phosphate 1.2). A low citrate dose (2.5--3 mmol/l) and a higher than usual target circuit-Ca2+ (<=0.5 mmol/l) have been adopted. RESULTS: Two historical groups of heart surgery patients (n = 40) underwent RCA-CRRT with protocol A (n = 20, 102 circuits, total running time 5283 hours) or protocol B (n = 20, 138 circuits, total running time 7308 hours). Despite higher circuit-Ca2+ in protocol B (0.37 vs 0.42 mmol/l, p < 0.001), circuit life was comparable (51.8 +/- 36.5 vs 53 +/- 32.6 hours). Protocol A required additional bicarbonate supplementation (6 +/- 6.4 mmol/h) in 90% of patients while protocol B ensured appropriate acid--base balance without additional interventions: pH 7.43 (7.40--7.46), Bicarbonate 25.3 (23.8--26.6) mmol/l, BE 0.9 (-0.8 to +2.4); median (IQR). No episodes of clinically relevant metabolic alkalosis, requiring modifications of RCA-CRRT settings, were observed. Phosphate supplementation was needed in all group A patients (3.4 +/- 2.4 g/day) and in only 30% of group B patients (0.5 +/- 1.5 g/day). Hypophosphatemia developed in 75% and 30% of group A and group B patients, respectively. Serum phosphate was significantly higher in protocol B patients (P < 0.001) and, differently to protocol A, appeared to be steadily maintained in near normal range (0.97--1.45 mmol/l, IQR)

    Functional Expression of the Extracellular Calcium Sensing Receptor (CaSR) in Equine Umbilical Cord Matrix Size-Sieved Stem Cells

    Get PDF
    The present study investigates the effects of high external calcium concentration ([Ca(2+)](o)) and the calcimimetic NPS R-467, a known calcium-sensing receptor (CaSR) agonist, on growth/proliferation of two equine size-sieved umbilical cord matrix mesenchymal stem cell (eUCM-MSC) lines. The involvement of CaSR on observed cell response was analyzed at both the mRNA and protein level.A large (>8 µm in diameter) and a small (<8 µm) cell line were cultured in medium containing: 1) low [Ca(2+)](o) (0.37 mM); 2) high [Ca(2+)](o) (2.87 mM); 3) NPS R-467 (3 µM) in presence of high [Ca(2+)](o) and 4) the CaSR antagonist NPS 2390 (10 µM for 30 min.) followed by incubation in presence of NPS R-467 in medium with high [Ca(2+)](o). Growth/proliferation rates were compared between groups. In large cells, the addition of NPS R-467 significantly increased cell growth whereas increasing [Ca(2+)](o) was not effective in this cell line. In small cells, both higher [Ca(2+)](o) and NPS R-467 increased cell growth. In both cell lines, preincubation with the CaSR antagonist NPS 2390 significantly inhibited the agonistic effect of NPS R-467. In both cell lines, increased [Ca(2+)](o) and/or NPS R-467 reduced doubling time values.Treatment with NPS R-467 down-regulated CaSR mRNA expression in both cell lines. In large cells, NPS R-467 reduced CaSR labeling in the cytosol and increased it at cortical level.In conclusion, calcium and the calcimimetic NPS R-467 reduce CaSR mRNA expression and stimulate cell growth/proliferation in eUCM-MSC. Their use as components of media for eUCM-MSC culture could be beneficial to obtain enough cells for down-stream purposes

    Mouse models of neurodegenerative disease: preclinical imaging and neurovascular component.

    Get PDF
    Neurodegenerative diseases represent great challenges for basic science and clinical medicine because of their prevalence, pathologies, lack of mechanism-based treatments, and impacts on individuals. Translational research might contribute to the study of neurodegenerative diseases. The mouse has become a key model for studying disease mechanisms that might recapitulate in part some aspects of the corresponding human diseases. Neurode- generative disorders are very complicated and multifacto- rial. This has to be taken in account when testing drugs. Most of the drugs screening in mice are very di cult to be interpretated and often useless. Mouse models could be condiderated a ‘pathway models’, rather than as models for the whole complicated construct that makes a human disease. Non-invasive in vivo imaging in mice has gained increasing interest in preclinical research in the last years thanks to the availability of high-resolution single-photon emission computed tomography (SPECT), positron emission tomography (PET), high eld Magnetic resonance, Optical Imaging scanners and of highly speci c contrast agents. Behavioral test are useful tool to characterize di erent ani- mal models of neurodegenerative pathology. Furthermore, many authors have observed vascular pathological features associated to the di erent neurodegenerative disorders. Aim of this review is to focus on the di erent existing animal models of neurodegenerative disorders, describe behavioral tests and preclinical imaging techniques used for diagnose and describe the vascular pathological features associated to these diseases

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis
    corecore