481 research outputs found
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km² resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e., offset) between in-situ soil temperature measurements, based on time series from over 1200 1-km² pixels (summarized from 8500 unique temperature sensors) across all the world’s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in-situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Study of the decay
The decay is studied
in proton-proton collisions at a center-of-mass energy of TeV
using data corresponding to an integrated luminosity of 5
collected by the LHCb experiment. In the system, the
state observed at the BaBar and Belle experiments is
resolved into two narrower states, and ,
whose masses and widths are measured to be where the first uncertainties are statistical and the second
systematic. The results are consistent with a previous LHCb measurement using a
prompt sample. Evidence of a new
state is found with a local significance of , whose mass and width
are measured to be and , respectively. In addition, evidence of a new decay mode
is found with a significance of
. The relative branching fraction of with respect to the
decay is measured to be , where the first
uncertainty is statistical, the second systematic and the third originates from
the branching fractions of charm hadron decays.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-028.html (LHCb
public pages
Multidifferential study of identified charged hadron distributions in -tagged jets in proton-proton collisions at 13 TeV
Jet fragmentation functions are measured for the first time in proton-proton
collisions for charged pions, kaons, and protons within jets recoiling against
a boson. The charged-hadron distributions are studied longitudinally and
transversely to the jet direction for jets with transverse momentum 20 GeV and in the pseudorapidity range . The
data sample was collected with the LHCb experiment at a center-of-mass energy
of 13 TeV, corresponding to an integrated luminosity of 1.64 fb. Triple
differential distributions as a function of the hadron longitudinal momentum
fraction, hadron transverse momentum, and jet transverse momentum are also
measured for the first time. This helps constrain transverse-momentum-dependent
fragmentation functions. Differences in the shapes and magnitudes of the
measured distributions for the different hadron species provide insights into
the hadronization process for jets predominantly initiated by light quarks.Comment: All figures and tables, along with machine-readable versions and any
supplementary material and additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-013.html (LHCb
public pages
Measurement of the ratios of branching fractions and
The ratios of branching fractions
and are measured, assuming isospin symmetry, using a
sample of proton-proton collision data corresponding to 3.0 fb of
integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The
tau lepton is identified in the decay mode
. The measured values are
and
, where the first uncertainty is
statistical and the second is systematic. The correlation between these
measurements is . Results are consistent with the current average
of these quantities and are at a combined 1.9 standard deviations from the
predictions based on lepton flavor universality in the Standard Model.Comment: All figures and tables, along with any supplementary material and
additional information, are available at
https://cern.ch/lhcbproject/Publications/p/LHCb-PAPER-2022-039.html (LHCb
public pages
Global maps of soil temperature
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0–5 and 5–15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world\u27s major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (−0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Time to Switch to Second-line Antiretroviral Therapy in Children With Human Immunodeficiency Virus in Europe and Thailand.
Background: Data on durability of first-line antiretroviral therapy (ART) in children with human immunodeficiency virus (HIV) are limited. We assessed time to switch to second-line therapy in 16 European countries and Thailand. Methods: Children aged <18 years initiating combination ART (≥2 nucleoside reverse transcriptase inhibitors [NRTIs] plus nonnucleoside reverse transcriptase inhibitor [NNRTI] or boosted protease inhibitor [PI]) were included. Switch to second-line was defined as (i) change across drug class (PI to NNRTI or vice versa) or within PI class plus change of ≥1 NRTI; (ii) change from single to dual PI; or (iii) addition of a new drug class. Cumulative incidence of switch was calculated with death and loss to follow-up as competing risks. Results: Of 3668 children included, median age at ART initiation was 6.1 (interquartile range (IQR), 1.7-10.5) years. Initial regimens were 32% PI based, 34% nevirapine (NVP) based, and 33% efavirenz based. Median duration of follow-up was 5.4 (IQR, 2.9-8.3) years. Cumulative incidence of switch at 5 years was 21% (95% confidence interval, 20%-23%), with significant regional variations. Median time to switch was 30 (IQR, 16-58) months; two-thirds of switches were related to treatment failure. In multivariable analysis, older age, severe immunosuppression and higher viral load (VL) at ART start, and NVP-based initial regimens were associated with increased risk of switch. Conclusions: One in 5 children switched to a second-line regimen by 5 years of ART, with two-thirds failure related. Advanced HIV, older age, and NVP-based regimens were associated with increased risk of switch
Global maps of soil temperature.
Research in global change ecology relies heavily on global climatic grids derived from estimates of air temperature in open areas at around 2 m above the ground. These climatic grids do not reflect conditions below vegetation canopies and near the ground surface, where critical ecosystem functions occur and most terrestrial species reside. Here, we provide global maps of soil temperature and bioclimatic variables at a 1-km2 resolution for 0-5 and 5-15 cm soil depth. These maps were created by calculating the difference (i.e. offset) between in situ soil temperature measurements, based on time series from over 1200 1-km2 pixels (summarized from 8519 unique temperature sensors) across all the world's major terrestrial biomes, and coarse-grained air temperature estimates from ERA5-Land (an atmospheric reanalysis by the European Centre for Medium-Range Weather Forecasts). We show that mean annual soil temperature differs markedly from the corresponding gridded air temperature, by up to 10°C (mean = 3.0 ± 2.1°C), with substantial variation across biomes and seasons. Over the year, soils in cold and/or dry biomes are substantially warmer (+3.6 ± 2.3°C) than gridded air temperature, whereas soils in warm and humid environments are on average slightly cooler (-0.7 ± 2.3°C). The observed substantial and biome-specific offsets emphasize that the projected impacts of climate and climate change on near-surface biodiversity and ecosystem functioning are inaccurately assessed when air rather than soil temperature is used, especially in cold environments. The global soil-related bioclimatic variables provided here are an important step forward for any application in ecology and related disciplines. Nevertheless, we highlight the need to fill remaining geographic gaps by collecting more in situ measurements of microclimate conditions to further enhance the spatiotemporal resolution of global soil temperature products for ecological applications
Opinions and Practices Regarding Electronic Cigarette Use among Middle School Students from Rural Areas of Romania
Background: The objectives of the study were to assess awareness, opinions, and practices regarding electronic cigarette (e-cigarette) use, as well as factors associated with their use, among middle-school aged students from rural areas of Romania. Methods: The study sample included 748 middle-school students aged 13–14 years from 24 schools from rural areas situated in two counties from Romania, after receiving parental consent. A cross-sectional study using confidential questionnaires which assessed smoking-related behaviors, and also opinions and practices related to e-cigarettes use, was performed in 2019 among the participating middle-schoolers. Results: 96.3% of the middle schoolers have heard about e-cigarettes. A percentage of 72.7% of the smokers, 50.8% of the ex-smokers, and 15.4% of the non-smokers had tried e-cigarettes at least once in their life; 20.3% of the smokers, 4.8% of the ex-smokers, and 4.5% of the non-smokers reported using e-cigarettes in the last month. The results of multivariate logistic regression analysis pointed out that e-cigarette use at least once during lifetime was associated with having friends who tried e-cigarettes, having stronger beliefs that they can help quit smoking and that they are less dangerous than traditional cigarettes. The intention to use e-cigarettes in the next year and smoking behavior were also correlated with e-cigarettes experimentation, while no gender differences were found. Conclusions: The results underline the importance of having prevention programs and interventions concerning e-cigarettes consumption, since e-cigarettes consumption is spread among Romanian adolescents from rural areas
Dyslipidemia in Pediatric Patients: A Cross-Sectional Study
There is an increasing interest in dyslipidemia in adult patients since it is known to contribute to early cardiovascular disease. Often, dyslipidemia starts in childhood, and it is associated with aggravating lifestyle choices concerning eating habits, such as the tendency to consume processed food and fast food, as well as the tendency to be more and more sedentary. We conducted a retrospective cross-sectional study describing the prevalence of dyslipidemia in a single medical center in Romania and the associated pathology. We evaluated all lipid profiles that were ordered in our clinic over nine years. We included 2413 patients that were evaluated in our clinic in the timeframe 2011–2020. Out of them, 18.23% had high values for LDL-cholesterol. More than a quarter (25.91%) were diagnosed with obesity. 11.37% of the patients with high LDL-cholesterol levels had various metabolic disorders including primary dyslipidemia. A small number of patients with hypercholesterolemia had thyroid disorders (4.10%). Patients with high LDL-cholesterol had various diagnoses ranging from metabolic to neurologic disorders, keeping in mind that there are multiple pathologies that can lead to dyslipidemia. Evaluating children for dyslipidemia is at hand for medical professionals. Screening for dyslipidemia in children would provide the opportunity to prevent rather than treat cardiovascular events
S-layer production by Lactobacillus acidophilus IBB 801 under environmental stress conditions
The ability of microorganisms to synthesize S-layer, the outermost structure of the microbial cell envelope composed of non-covalently bound proteins, has been ascribed to help microorganisms to exert their probiotic properties in the host. In this work, formation of S-layer by the potentially probiotic strain Lactobacillus acidophilus IBB 801 under different stress culture conditions (high incubation temperatures, presence of bile salts or NaCl, and acidic pH) was assayed. A marked S-layer synthesis by L. acidophilus IBB 801 was detected when the strain was grown at 42 °C and in the presence of 0.05 % bile salts or 2.0 % NaCl. The presence of S-layer proteins was further confirmed by transmission electron microscopy and protein identification by MS/MS. The differential expression of the proteome of this strain at 42 °C, when a marked formation of S-layer was detected, revealed the overexpression of six proteins mainly related to general stress and protein biosynthesis and translation, while four proteins detected in lower amounts were involved in DNA repair and energy metabolism. As L. acidophilus IBB 801 produces both a bacteriocin and S-layer proteins, the strain could be of interest to be used in the formulation of functional food products with specific properties.Fil: Grosu Tudor, Silvia Simona. Academia Romana, Institutul de Biologie Bucuresti; RumaniaFil: Brown, Lucia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Hebert, Elvira Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Brezeanu, Aurelia. Academia Romana, Institutul de Biologie Bucuresti; RumaniaFil: Brinzan, Alexandru. Academia Romana, Institutul de Biologie Bucuresti; RumaniaFil: Fadda, Silvina G.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Mozzi, Fernanda Beatriz. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucuman. Centro de Referencia Para Lactobacilos; ArgentinaFil: Zamfir, Medana. Academia Romana, Institutul de Biologie Bucuresti; Rumani
- …