10 research outputs found

    Composite-derived monomers affect cell viability and cytokine expression in human leukocytes stimulated with Porphyromonas gingivalis

    Get PDF
    Objectives:  Dental composites release unreacted resin monomers into the oral environment, even after polymerization. Periodontal cells are, therefore, exposed to substances that potentially elicit the immune inflammatory response. The underlying molecular mechanisms associated with the interaction between resin monomers and human immune cells found in the gingival crevicular fluid are not fully understood yet. This study investigated the ability of bisphenol A-glycidyl methacrylate (BISGMA), urethane dimethacrylate (UDMA) and triethylene glycol dimethacrylate (TEGDMA) to induce apoptosis and cytokine release by human leukocytes stimulated with a periodontal pathogen. Methodology: Peripheral blood mononuclear cells (PBMC) from 16 healthy individuals were included in this study. To determine the toxicity, the PBMC were incubated for 20 hours, with monomers, for the analysis of cell viability using MTT assay. To evaluate cell death in the populations of monocytes and lymphocytes, they were exposed to sub-lethal doses of each monomer and of heat-inactivated Porphyromonas gingivalis (P. gingivalis) for 5 hours. Secretions of IL-1β, IL-6, IL-10 and TNF-α were determined by ELISA after 20 hours. Results: UDMA and TEGDMA induced apoptosis after a short-time exposure. Bacterial challenge induced significant production of IL-1β and TNF-α (p<0.05). TEGDMA reduced the bacterial-induced release of IL-1β and TNF-α, whereas UDMA reduced IL-1β release (p<0.05). These monomers did not affect IL-10 and IL-6 secretion. BISGMA did not significantly interfere in cytokine release.  Conclusions: These results show that resin monomers are toxic to PBMC in a dose-dependent manner, and may influence the local immune inflammatory response and tissue damage mechanisms via regulation of bacterial-induced IL-1β and TNF-α secretion by PBMC

    Activation of Human CD11b+ B1 B-Cells by Trypanosoma cruzi-Derived Proteins Is Associated With Protective Immune Response in Human Chagas Disease

    Get PDF
    B-cells mediate humoral adaptive immune response via the production of antibodies and cytokines, and by inducing T-cell activation. These functions can be attributed to distinct B-cell subpopulations. Infection with Trypanosoma cruzi, the causative agent of Chagas disease, induces a polyclonal B-cell activation and lytic antibody production, critical for controlling parasitemia. Individuals within the chronic phase of Chagas disease may remain in an asymptomatic form (indeterminate), or develop severe cardiomyopathy (cardiac form) that can lead to death. Currently, there is no effective vaccine to prevent Chagas disease, and no treatment to halt the development of the cardiomyopathy once it is installed. The pathology associated with cardiac Chagas disease is a result of an inflammatory reaction. Thus, discovering characteristics of the host's immune response that favor the maintenance of favorable heart function may unveil important immunotherapeutic targets. Given the importance of B cells in antibody production and parasite control, we investigated T. cruzi-derived antigenic fractions responsible for B-cell activation and whether frequencies and functional characteristics of B-cell subpopulations are associated with different clinical outcomes of human Chagas disease. We stimulated cells from indeterminate (I) and cardiac (C) Chagas patients, as well as non-infected individuals (NI), with T. cruzi-derived protein- (PRO), glycolipid- (GCL) and lipid (LIP)-enriched fractions and determined functional characteristics of B-cell subpopulations. Our results showed that the frequency of B-cells was similar amongst groups. PRO, but not GCL nor LIP, led to an increased frequency of B1 B-cells in I, but not C nor NI. Although stimulation with PRO induced higher TNF expression by B1 B-cells from C and I, as compared to NI, it induced expression of IL-10 in cells from I, but not C. Stimulation with PRO induced an increased frequency of the CD11b+ B1 B-cell subpopulation, which was associated with better cardiac function. Chagas patients displayed increased IgM production, and activation of gamma-delta T-cells, which have been associated with B1 B-cell function. Our data showed that PRO activates CD11b+ B1 B-cells, and that this activation is associated with a beneficial clinical status. These findings may have implications in designing new strategies focusing on B-cell activation to prevent Chagas disease cardiomyopathy

    Infection of Human Monocytes with Leishmania infantum Strains Induces a Downmodulated Response when Compared with Infection with Leishmania braziliensis

    No full text
    Human infection with different species of Leishmania leads to distinct clinical manifestations, ranging from relatively mild cutaneous (Leishmania braziliensis) to severe visceral (Leishmania infantum) forms of leishmaniasis. Here, we asked whether in vitro infection of human monocytes by Leishmania strains responsible for distinct clinical manifestations leads to early changes in immunological characteristics and ability of the host cells to control Leishmania. We evaluated the expression of toll-like receptors and MHC class II molecules, cytokines, and Leishmania control by human monocytes following short-term infection with L. braziliensis (M2904), a reference strain of L. infantum (BH46), and a wild strain of L. infantum (wild). The induction of TLR2, TLR9, and HLA-DR were all lower in L. infantum when compared with L. braziliensis-infected cells. Moreover, L. infantum-infected monocytes (both strains) produced lower TNF-alpha and a lower TNF-alpha/IL-10 ratio, resulting in a weaker inflammatory profile and a 100-fold less effective control of Leishmania than cells infected with L. braziliensis. Our results show that L. infantum strains fail to induce a strong inflammatory response, less activation, and less control of Leishmania from human monocytes, when compared with that induced by L. braziliensis infection. This functional profile may help explain the distinct clinical course observed in patients infected with the different Leishmania species

    Activation of Human CD11b+ B1 B-Cells by Trypanosoma cruzi-Derived Proteins Is Associated With Protective Immune Response in Human Chagas Disease

    No full text
    Submitted by Nuzia Santos ([email protected]) on 2019-10-18T18:05:46Z No. of bitstreams: 1 Activation of Human CD11b+ B1 B-Cells.pdf: 1184928 bytes, checksum: 60dd296cf28c092dc46ba1ef0977c524 (MD5)Approved for entry into archive by Nuzia Santos ([email protected]) on 2019-10-18T18:12:17Z (GMT) No. of bitstreams: 1 Activation of Human CD11b+ B1 B-Cells.pdf: 1184928 bytes, checksum: 60dd296cf28c092dc46ba1ef0977c524 (MD5)Made available in DSpace on 2019-10-18T18:12:17Z (GMT). No. of bitstreams: 1 Activation of Human CD11b+ B1 B-Cells.pdf: 1184928 bytes, checksum: 60dd296cf28c092dc46ba1ef0977c524 (MD5) Previous issue date: 2018Universidade Federal de Minas Gerais. Departamento de Morfologia Instituto de Ciências Biológicas. Laboratório de Interações Célula-Célula. Belo Horizonte, MG, Brasil / Universidade Federal de Minas Gerais. Pós-graduação em Parasitologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Departamento de Morfologia Instituto de Ciências Biológicas. Laboratório de Interações Célula-Célula. Belo Horizonte, MG, Brasil / Universidade Federal de Minas Gerais. Pós-graduação em Parasitologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Pós-graduação em Parasitologia. Belo Horizonte, MG, Brasil / Fundação Oswaldo Cruz. Instituto René Rachou. Laboratório de Parasitologia Celular e Molecular. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Pós-graduação em Parasitologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Departamento de Morfologia Instituto de Ciências Biológicas. Laboratório de Interações Célula-Célula. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Departamento de Morfologia Instituto de Ciências Biológicas. Laboratório de Interações Célula-Célula. Belo Horizonte, MG, Brasil / Universidade Federal de Minas Gerais. Pós-graduação em Parasitologia. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Faculdade de Medicina. Departamento de Clínica Médica. Belo Horizonte, MG, Brasil.A. C. Camargo Centro de Câncer. Centro de Pesquisa Internacional. São Paulo, SP, Brasil / Instituto Nacional de Ciência e Tecnologia Doenças Tropicais. Belo Horizonte, MG, Brasil.Universidade Federal de Minas Gerais. Departamento de Morfologia Instituto de Ciências Biológicas. Laboratório de Interações Célula-Célula. Belo Horizonte, MG, Brasil / Universidade Federal de Minas Gerais. Pós-graduação em Parasitologia. Belo Horizonte, MG, Brasil / Instituto Nacional de Ciência e Tecnologia Doenças Tropicais. Belo Horizonte, MG, Brasil.B-cells mediate humoral adaptive immune response via the production of antibodies and cytokines, and by inducing T-cell activation. These functions can be attributed to distinct B-cell subpopulations. Infection with Trypanosoma cruzi, the causative agent of Chagas disease, induces a polyclonal B-cell activation and lytic antibody production, critical for controlling parasitemia. Individuals within the chronic phase of Chagas disease may remain in an asymptomatic form (indeterminate), or develop severe cardiomyopathy (cardiac form) that can lead to death. Currently, there is no effective vaccine to prevent Chagas disease, and no treatment to halt the development of the cardiomyopathy once it is installed. The pathology associated with cardiac Chagas disease is a result of an inflammatory reaction. Thus, discovering characteristics of the host's immune response that favor the maintenance of favorable heart function may unveil important immunotherapeutic targets. Given the importance of B cells in antibody production and parasite control, we investigated T. cruzi-derived antigenic fractions responsible for B-cell activation and whether frequencies and functional characteristics of B-cell subpopulations are associated with different clinical outcomes of human Chagas disease. We stimulated cells from indeterminate (I) and cardiac (C) Chagas patients, as well as non-infected individuals (NI), with T. cruzi-derived protein- (PRO), glycolipid- (GCL) and lipid (LIP)-enriched fractions and determined functional characteristics of B-cell subpopulations. Our results showed that the frequency of B-cells was similar amongst groups. PRO, but not GCL nor LIP, led to an increased frequency of B1 B-cells in I, but not C nor NI. Although stimulation with PRO induced higher TNF expression by B1 B-cells from C and I, as compared to NI, it induced expression of IL-10 in cells from I, but not C. Stimulation with PRO induced an increased frequency of the CD11b+ B1 B-cell subpopulation, which was associated with better cardiac function. Chagas patients displayed increased IgM production, and activation of gamma-delta T-cells, which have been associated with B1 B-cell function. Our data showed that PRO activates CD11b+ B1 B-cells, and that this activation is associated with a beneficial clinical status. These findings may have implications in designing new strategies focusing on B-cell activation to prevent Chagas disease cardiomyopathy

    Chronic infection by atypical Toxoplasma gondii strain induces disturbance in microglia population and altered behaviour in mice

    No full text
    Toxoplasma gondii chronic infection is characterized by the establishment of tissue cysts in the brain and increased levels of IFN-γ, which can lead to brain circuitry interference and consequently abnormal behaviour in mice. In this sense, the study presented here sought to investigate the impact of chronic infection by two T. gondii strains in the brain of infection-resistant mice, as a model for studying the involvement of chronic neuroinflammation with the development of behavioural alterations. For that, male BALB/c mice were divided into three groups: non-infected (Ni), infected with T. gondii ME49 clonal strain (ME49), and infected with TgCkBrRN2 atypical strain (CK2). Mice were monitored for 60 days to establish the chronic infection and then submitted to behavioural assessment. The enzyme-linked immunosorbent assay was used for measurement of specific IgG in the blood and levels of inflammatory cytokines and neurotrophic factors in the brain, and the cell's immunophenotype was determined by multiparametric flow cytometry. Mice infected with ME49 clonal strain displayed hyperlocomotor activity and memory deficit, although no signs of depressive- and/or anxiety-like behaviour were detected; on the other hand, chronic infection with CK2 atypical strain induced anxiety- and depressive-like behaviour. During chronic infection by CK2 atypical strain, mice displayed a higher number of T. gondii brain tissue cysts and inflammatory infiltrate, composed mainly of CD3+ T lymphocytes and Ly6Chi inflammatory monocytes, compared to mice infected with the ME49 clonal strain. Infected mice presented a marked decrease of microglia population compared to non-infected group. Chronic infection with CK2 strain produced elevated levels of IFN-γ and TNF-ɑ in the brain, decreased NGF levels in the prefrontal cortex and striatum, and altered levels of fractalkine (CX3CL1) in the prefrontal cortex and hippocampus. The persistent inflammation and the disturbance in the cerebral homeostasis may contribute to altered behaviour in mice, as the levels of IFN-γ were shown to be correlated with the behavioural parameters assessed here. Considering the high incidence and life-long persistence of T. gondii infection, this approach can be considered a suitable model for studying the impact of chronic infections in the brain and how it impacts in behavioural responses

    A PRODUÇÃO ACADÊMICA SOBRE ORGANIZAÇÃO DOCENTE: AÇÃO COLETIVA E RELAÇÕES DE GÊNERO

    No full text

    Characterisation of microbial attack on archaeological bone

    Get PDF
    As part of an EU funded project to investigate the factors influencing bone preservation in the archaeological record, more than 250 bones from 41 archaeological sites in five countries spanning four climatic regions were studied for diagenetic alteration. Sites were selected to cover a range of environmental conditions and archaeological contexts. Microscopic and physical (mercury intrusion porosimetry) analyses of these bones revealed that the majority (68%) had suffered microbial attack. Furthermore, significant differences were found between animal and human bone in both the state of preservation and the type of microbial attack present. These differences in preservation might result from differences in early taphonomy of the bones. © 2003 Elsevier Science Ltd. All rights reserved

    NEOTROPICAL XENARTHRANS: a data set of occurrence of xenarthran species in the Neotropics

    No full text
    Xenarthrans—anteaters, sloths, and armadillos—have essential functions for ecosystem maintenance, such as insect control and nutrient cycling, playing key roles as ecosystem engineers. Because of habitat loss and fragmentation, hunting pressure, and conflicts with domestic dogs, these species have been threatened locally, regionally, or even across their full distribution ranges. The Neotropics harbor 21 species of armadillos, 10 anteaters, and 6 sloths. Our data set includes the families Chlamyphoridae (13), Dasypodidae (7), Myrmecophagidae (3), Bradypodidae (4), and Megalonychidae (2). We have no occurrence data on Dasypus pilosus (Dasypodidae). Regarding Cyclopedidae, until recently, only one species was recognized, but new genetic studies have revealed that the group is represented by seven species. In this data paper, we compiled a total of 42,528 records of 31 species, represented by occurrence and quantitative data, totaling 24,847 unique georeferenced records. The geographic range is from the southern United States, Mexico, and Caribbean countries at the northern portion of the Neotropics, to the austral distribution in Argentina, Paraguay, Chile, and Uruguay. Regarding anteaters, Myrmecophaga tridactyla has the most records (n = 5,941), and Cyclopes sp. have the fewest (n = 240). The armadillo species with the most data is Dasypus novemcinctus (n = 11,588), and the fewest data are recorded for Calyptophractus retusus (n = 33). With regard to sloth species, Bradypus variegatus has the most records (n = 962), and Bradypus pygmaeus has the fewest (n = 12). Our main objective with Neotropical Xenarthrans is to make occurrence and quantitative data available to facilitate more ecological research, particularly if we integrate the xenarthran data with other data sets of Neotropical Series that will become available very soon (i.e., Neotropical Carnivores, Neotropical Invasive Mammals, and Neotropical Hunters and Dogs). Therefore, studies on trophic cascades, hunting pressure, habitat loss, fragmentation effects, species invasion, and climate change effects will be possible with the Neotropical Xenarthrans data set. Please cite this data paper when using its data in publications. We also request that researchers and teachers inform us of how they are using these data
    corecore