133 research outputs found

    Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor

    Get PDF
    The mechanism of muscle protein catabolism induced by proteolysis-inducing factor, produced by cachexia-inducing murine and human tumours has been studied in vitro using C2C12 myoblasts and myotubes. In both myoblasts and myotubes protein degradation was enhanced by proteolysis-inducing factor after 24 h incubation. In myoblasts this followed a bell-shaped dose-response curve with maximal effects at a proteolysis-inducing factor concentration between 2 and 4 nM, while in myotubes increased protein degradation was seen at all concentrations of proteolysis-inducing factor up to 10 nM, again with a maximum of 4 nM proteolysis-inducing factor. Protein degradation induced by proteolysis-inducing factor was completely attenuated in the presence of cycloheximide (1 ΌM), suggesting a requirement for new protein synthesis. In both myoblasts and myotubes protein degradation was accompanied by an increased expression of the α-type subunits of the 20S proteasome as well as functional activity of the proteasome, as determined by the ‘chymotrypsin-like’ enzyme activity. There was also an increased expression of the 19S regulatory complex as well as the ubiquitin-conjugating enzyme (E214k), and in myotubes a decrease in myosin expression was seen with increasing concentrations of proteolysis-inducing factor. These results show that proteolysis-inducing factor co-ordinately upregulates both ubiquitin conjugation and proteasome activity in both myoblasts and myotubes and may play an important role in the muscle wasting seen in cancer cachexia

    TNF-α is involved in activating DNA fragmentation in skeletal muscle

    Get PDF
    Intraperitoneal administration of 100 Όg kg−1 (body weight) of tumour necrosis factor-α to rats for 8 consecutive days resulted in a significant decrease in protein content, which was concomitant with a reduction in DNA content. Interestingly, the protein/DNA ratio was unchanged in the skeletal muscle of the tumour necrosis factor-α-treated animals as compared with the non-treated controls. Analysis of muscle DNA fragmentation clearly showed enhanced laddering in the skeletal muscle of tumour necrosis factor-α-treated animals, suggesting an apoptotic phenomenon. In a different set of experiments, mice bearing a cachexia-inducing tumour (the Lewis lung carcinoma) showed an increase in muscle DNA fragmentation (9.8-fold) as compared with their non-tumour-bearing control counterparts as previously described. When gene-deficient mice for tumour necrosis factor-α receptor protein I were inoculated with Lewis lung carcinoma, they were also affected by DNA fragmentation; however the increase was only 2.1-fold. These results suggest that tumour necrosis factor-α partly mediates DNA fragmentation during experimental cancer-associated cachexia

    Augmented Reality in a Hiking Tour of the Miocene Geoheritage of the Central Algarve Cliffs (Portugal)

    Get PDF
    Acceso electrĂłnico sĂłlo desde el IGMEEight sites with geological (including palaeontological and geomorphological) interest (geosites) representative of the Lower and Middle Miocene carbonate deposits near Albufeira in central Algarve (southern Portugal) have been selected based on our extended working experience. The sites can be visited by hiking in a 1-day field trip. A virtual 3D tour of the georeferenced sites was produced using augmented reality technique and geoinformatic tools which integrate thematic digital layers such as geological maps and orthophotos. Every stop in the tour includes descriptive and graphic elements that can be viewed in free virtual globes (e.g. Google Earth) combined with diagrams, photographs and information sheets that quantitatively assess the cultural-touristic, educational and scientific value of the geosites. A virtual flight itinerary compatible with video formats in the new free technologies (smartphones, tablets and iPads) is also presented.Departamento de GeologĂ­a, Universidad de Salamanca, EspañaGeoBioTec, Departamento de CiĂȘncias da Terra, Universidade Nova de Lisboa, PortugalDepartamento de EstratigrafĂ­a, Universidad Complutense de Madrid, EspañaMuseo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones CientĂ­ficas, EspañaLaboratĂłrio Nacional de Geologia e Energia, Portuga

    Deletion of Nlrp3 protects from inflammation-induced skeletal muscle atrophy

    Get PDF
    BACKGROUND: Critically ill patients develop atrophic muscle failure, which increases morbidity and mortality. Interleukin-1ÎČ (IL-1ÎČ) is activated early in sepsis. Whether IL-1ÎČ acts directly on muscle cells and whether its inhibition prevents atrophy is unknown. We aimed to investigate if IL-1ÎČ activation via the Nlrp3 inflammasome is involved in inflammation-induced atrophy. METHODS: We performed an experimental study and prospective animal trial. The effect of IL-1ÎČ on differentiated C2C12 muscle cells was investigated by analyzing gene-and-protein expression, and atrophy response. Polymicrobial sepsis was induced by cecum ligation and puncture surgery in Nlrp3 knockout and wild type mice. Skeletal muscle morphology, gene and protein expression, and atrophy markers were used to analyze the atrophy response. Immunostaining and reporter-gene assays showed that IL-1ÎČ signaling is contained and active in myocytes. RESULTS: Immunostaining and reporter gene assays showed that IL-1ÎČ signaling is contained and active in myocytes. IL-1ÎČ increased Il6 and atrogene gene expression resulting in myocyte atrophy. Nlrp3 knockout mice showed reduced IL-1ÎČ serum levels in sepsis. As determined by muscle morphology, organ weights, gene expression, and protein content, muscle atrophy was attenuated in septic Nlrp3 knockout mice, compared to septic wild-type mice 96 h after surgery. CONCLUSIONS: IL-1ÎČ directly acts on myocytes to cause atrophy in sepsis. Inhibition of IL-1ÎČ activation by targeting Nlrp3 could be useful to prevent inflammation-induced muscle failure in critically ill patients

    Satellite Cells Senescence in Limb Muscle of Severe Patients with COPD

    Get PDF
    Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada Rationale: The maintenance of peripheral muscle mass may be compromised in chronic obstructive pulmonary disease (COPD) due to premature cellular senescence and exhaustion of the regenerative potential of the muscles. Methods: Vastus lateralis biopsies were obtained from patients with COPD (n = 16) and healthy subjects (n = 7). Satellite cell number and the proportion of central nuclei, as a marker of muscle regenerative events, were assessed on cryosections. Telomere lengths, used as a marker of cellular senescence, were determined using Southern blot analyses. Results: Central nuclei proportion was significantly higher in patients with COPD with a preserved muscle mass compared to controls and patients with COPD with muscle atrophy (p,0.001). In COPD, maximal telomere length was significantly decreased compared to controls (p,0.05). Similarly, minimal telomere length was significantly reduced in GOLD III–IV patients with muscle atrophy compared to controls (p,0.005). Minimal, mean and maximum telomere lengths correlated with mid-thigh muscle cross-sectional area (MTCSA) (R = 0.523, p = 0.005; R = 0.435, p = 0.019 and R = 0.491, p = 0.009, respectively). Conclusions: Evidence of increased regenerative events was seen in GOLD III–IV patients with preserved muscle mass. Shortening of telomeres in GOLD III–IV patients with muscle atrophy is consistent with an increased number of senescen

    Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases

    Get PDF
    Symbiosis Receptor-like Kinase (SYMRK) is indispensable for the development of phosphate-acquiring arbuscular mycorrhiza (AM) as well as nitrogen-fixing root nodule symbiosis, but the mechanisms that discriminate between the two distinct symbiotic developmental fates have been enigmatic. In this study, we show that upon ectopic expression, the receptor-like kinase genes Nod Factor Receptor 1 (NFR1), NFR5, and SYMRK initiate spontaneous nodule organogenesis and nodulation-related gene expression in the absence of rhizobia. Furthermore, overexpressed NFR1 or NFR5 associated with endogenous SYMRK in roots of the legume Lotus japonicus. Epistasis tests revealed that the dominant active SYMRK allele initiates signalling independently of either the NFR1 or NFR5 gene and upstream of a set of genes required for the generation or decoding of calcium-spiking in both symbioses. Only SYMRK but not NFR overexpression triggered the expression of AM-related genes, indicating that the receptors play a key role in the decision between AM- or root nodule symbiosis-development
    • 

    corecore