1,541 research outputs found
Scattering mechanism in a step-modulated subwavelength metal slit: a multi-mode multi-reflection analysis
In this paper, the scattering/transmission inside a step-modulated
subwavelength metal slit is investigated in detail. We firstly investigate the
scattering in a junction structure by two types of structural changes. The
variation of transmission and reflection coefficients depending on structural
parameters are analyzed. Then a multi-mode multi-reflection model based on ray
theory is proposed to illustrate the transmission in the step-modulated slit
explicitly. The key parts of this model are the multi-mode excitation and the
superposition procedure of the scatterings from all possible modes, which
represent the interference and energy transfer happened at interfaces. The
method we use is an improved modal expansion method (MEM), which is a more
practical and efficient version compared with the previous one [Opt. Express
19, 10073 (2011)]. In addition, some commonly used methods, FDTD, scattering
matrix method, and improved characteristic impedance method, are compared with
MEM to highlight the preciseness of these methods.Comment: 25 pages, 9 figure
Influence of Carbon Concentration on the Superconductivity in MgCxNi3
The influence of carbon concentration on the superconductivity (SC) in
MgCNi has been investigated by measuring the low temperature specific
heat combined with first principles electronic structure calculation. It is
found that the specific heat coefficient of the
superconducting sample () in normal state is twice that of the
non-superconducting one (). The comparison of measured
and the calculated electronic density of states (DOS) shows that the
effective mass renormalization changes remarkably as the carbon concentration
changes. The large mass renormalization for the superconducting sample and the
low (7K) indicate that more than one kind of boson mediated
electron-electron interactions exist in MgCNi.Comment: 4 pages, 4 figure
Optimization of inhomogeneous electron correlation factors in periodic solids
A method is presented for the optimization of one-body and inhomogeneous
two-body terms in correlated electronic wave functions of Jastrow-Slater type.
The most general form of inhomogeneous correlation term which is compatible
with crystal symmetry is used and the energy is minimized with respect to all
parameters using a rapidly convergent iterative approach, based on Monte Carlo
sampling of the energy and fitting energy fluctuations. The energy minimization
is performed exactly within statistical sampling error for the energy
derivatives and the resulting one- and two-body terms of the wave function are
found to be well-determined. The largest calculations performed require the
optimization of over 3000 parameters. The inhomogeneous two-electron
correlation terms are calculated for diamond and rhombohedral graphite. The
optimal terms in diamond are found to be approximately homogeneous and
isotropic over all ranges of electron separation, but exhibit some
inhomogeneity at short- and intermediate-range, whereas those in graphite are
found to be homogeneous at short-range, but inhomogeneous and anisotropic at
intermediate- and long-range electron separation.Comment: 23 pages, 15 figures, 1 table, REVTeX4, submitted to PR
The price of rapid exit in venture capital-backed IPOs
This paper proposes an explanation for two empirical puzzles surrounding initial public offerings (IPOs). Firstly, it is well documented that IPO underpricing increases during “hot issue” periods. Secondly, venture capital (VC) backed IPOs are less underpriced than non-venture capital backed IPOs during normal periods of activity, but the reverse is true during hot issue periods: VC backed IPOs are more underpriced than non-VC backed ones. This paper shows that when IPOs are driven by the initial investor’s desire to exit from an existing investment in order to finance a new venture, both the value of the new venture and the value of the existing firm to be sold in the IPO drive the investor’s choice of price and fraction of shares sold in the IPO. When this is the case, the availability of attractive new ventures increases equilibrium underpricing, which is what we observe during hot issue periods. Moreover, I show that underpricing is affected by the severity of the moral hazard problem between an investor and the firm’s manager. In the presence of a moral hazard problem the degree of equilibrium underpricing is more sensitive to changes in the value of the new venture. This can explain why venture capitalists, who often finance firms with more severe moral hazard problems, underprice IPOs less in normal periods, but underprice more strongly during hot issue periods. Further empirical implications relating the fraction of shares sold and the degree of underpricing are presented
Cosmological distance indicators
We review three distance measurement techniques beyond the local universe:
(1) gravitational lens time delays, (2) baryon acoustic oscillation (BAO), and
(3) HI intensity mapping. We describe the principles and theory behind each
method, the ingredients needed for measuring such distances, the current
observational results, and future prospects. Time delays from strongly lensed
quasars currently provide constraints on with < 4% uncertainty, and with
1% within reach from ongoing surveys and efforts. Recent exciting discoveries
of strongly lensed supernovae hold great promise for time-delay cosmography.
BAO features have been detected in redshift surveys up to z <~ 0.8 with
galaxies and z ~ 2 with Ly- forest, providing precise distance
measurements and with < 2% uncertainty in flat CDM. Future BAO
surveys will probe the distance scale with percent-level precision. HI
intensity mapping has great potential to map BAO distances at z ~ 0.8 and
beyond with precisions of a few percent. The next years ahead will be exciting
as various cosmological probes reach 1% uncertainty in determining , to
assess the current tension in measurements that could indicate new
physics.Comment: Review article accepted for publication in Space Science Reviews
(Springer), 45 pages, 10 figures. Chapter of a special collection resulting
from the May 2016 ISSI-BJ workshop on Astronomical Distance Determination in
the Space Ag
Colossal dielectric constants in transition-metal oxides
Many transition-metal oxides show very large ("colossal") magnitudes of the
dielectric constant and thus have immense potential for applications in modern
microelectronics and for the development of new capacitance-based
energy-storage devices. In the present work, we thoroughly discuss the
mechanisms that can lead to colossal values of the dielectric constant,
especially emphasising effects generated by external and internal interfaces,
including electronic phase separation. In addition, we provide a detailed
overview and discussion of the dielectric properties of CaCu3Ti4O12 and related
systems, which is today's most investigated material with colossal dielectric
constant. Also a variety of further transition-metal oxides with large
dielectric constants are treated in detail, among them the system La2-xSrxNiO4
where electronic phase separation may play a role in the generation of a
colossal dielectric constant.Comment: 31 pages, 18 figures, submitted to Eur. Phys. J. for publication in
the Special Topics volume "Cooperative Phenomena in Solids: Metal-Insulator
Transitions and Ordering of Microscopic Degrees of Freedom
Zero-point vacancies in quantum solids
A Jastrow wave function (JWF) and a shadow wave function (SWF) describe a
quantum solid with Bose--Einstein condensate; i.e. a supersolid. It is known
that both JWF and SWF describe a quantum solid with also a finite equilibrium
concentration of vacancies x_v. We outline a route for estimating x_v by
exploiting the existing formal equivalence between the absolute square of the
ground state wave function and the Boltzmann weight of a classical solid. We
compute x_v for the quantum solids described by JWF and SWF employing very
accurate numerical techniques. For JWF we find a very small value for the zero
point vacancy concentration, x_v=(1.4\pm0.1) x 10^-6. For SWF, which presently
gives the best variational description of solid 4He, we find the significantly
larger value x_v=(1.4\pm0.1) x 10^-3 at a density close to melting. We also
study two and three vacancies. We find that there is a strong short range
attraction but the vacancies do not form a bound state.Comment: 19 pages, submitted to J. Low Temp. Phy
Cosmological parameters from SDSS and WMAP
We measure cosmological parameters using the three-dimensional power spectrum
P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in
combination with WMAP and other data. Our results are consistent with a
``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt,
tensor modes or massive neutrinos. Adding SDSS information more than halves the
WMAP-only error bars on some parameters, tightening 1 sigma constraints on the
Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter
density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on
neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when
dropping prior assumptions about curvature, neutrinos, tensor modes and the
equation of state. Our results are in substantial agreement with the joint
analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive
consistency check with independent redshift survey data and analysis
techniques. In this paper, we place particular emphasis on clarifying the
physical origin of the constraints, i.e., what we do and do not know when using
different data sets and prior assumptions. For instance, dropping the
assumption that space is perfectly flat, the WMAP-only constraint on the
measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to
t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running
tilt, neutrino mass and equation of state in the list of free parameters, many
constraints are still quite weak, but future cosmological measurements from
SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt
figures available at http://www.hep.upenn.edu/~max/sdsspars.htm
Ameliorative effects of Vaccaria segetalis extract on osteopenia in ovariectomized rats
The purpose of this study was to determine the ameliorative effects of a crude extract of Vaccaria segetalis (Neck.) Garcke (Caryophyllaceae) (VSE) on osteopenia in ovariectomized (OVX) rats over 12 weeks. Rats were divided into the sham and OVX groups. The OVX rats were allowed to lose bone for 6 weeks. At 6 weeks post-OVX, the OVX rats were divided into four groups treated with water, 17 beta-estradiol (30 mu g/kg, daily subcutaneous injection), or VSE (0.5 or 1.0 g/kg, daily, orally) for 6 weeks. In OVX rats, the increases of serum total cholesterol were significantly decreased by VSE or 17 beta-estradiol treatment. There were decreases in bone density and calcium content, including the left femur and the fourth lumbar vertebra, when compared with the sham control rats. Treatment with 17 beta-estradiol or VSE ameliorated these changes induced by OVX. In addition, ovariectomy increased urinary deoxypyridinoline (DPD) amounts (P < 0.001). The increases were suppressed by 17 beta-estradiol and 0.5 or 1.0 g/kg VSE (P < 0.01, P < 0.05, P < 0.01, respectively). Our results demonstrated that VSE ameliorates ovariectomy-induced osteopenia by inhibition of bone resorption
Measurement of D*+/- meson production in jets from pp collisions at sqrt(s) = 7 TeV with the ATLAS detector
This paper reports a measurement of D*+/- meson production in jets from
proton-proton collisions at a center-of-mass energy of sqrt(s) = 7 TeV at the
CERN Large Hadron Collider. The measurement is based on a data sample recorded
with the ATLAS detector with an integrated luminosity of 0.30 pb^-1 for jets
with transverse momentum between 25 and 70 GeV in the pseudorapidity range
|eta| < 2.5. D*+/- mesons found in jets are fully reconstructed in the decay
chain: D*+ -> D0pi+, D0 -> K-pi+, and its charge conjugate. The production rate
is found to be N(D*+/-)/N(jet) = 0.025 +/- 0.001(stat.) +/- 0.004(syst.) for
D*+/- mesons that carry a fraction z of the jet momentum in the range 0.3 < z <
1. Monte Carlo predictions fail to describe the data at small values of z, and
this is most marked at low jet transverse momentum.Comment: 10 pages plus author list (22 pages total), 5 figures, 1 table,
matches published version in Physical Review
- …
