129 research outputs found

    Innovations and advances in instrumentation at the W. M. Keck Observatory

    Get PDF
    Since the start of operations in 1993, the twin 10 meter W. M. Keck Observatory telescopes have continued to maximize their scientific impact and to produce transformative discoveries that keep the observing community on the frontiers of astronomical research. Upgraded capabilities and new instrumentation are provided though collaborative partnerships with Caltech and UC instrument development teams. The observatory adapts and responds to the observers’ evolving needs as defined in the observatory’s strategic plan, periodically refreshed in collaboration with the science community. This paper summarizes the performance of recently commissioned infrastructure projects, technology upgrades, and new additions to the suite of instrumentation at the observatory. We will also provide a status of projects currently in the design or development phase, and since we need to keep our eye on the future, we mention projects in exploratory phases that originate from our strategic plan. Recently commissioned projects include telescope control system upgrades, OSIRIS spectrometer and imager upgrades, and deployments of the Keck Cosmic Web Imager (KCWI), the Near-Infrared Echellette Spectrometer (NIRES), and the Keck I Deployable Tertiary Mirror (KIDM3). Under development are upgrades to the NIRSPEC instrument and adaptive optics (AO) system. Major instrumentation in design phases include the Keck Cosmic Reionization Mapper and the Keck Planet Finder. Future instrumentation studies and proposals underway include a Ground Layer Adaptive Optics system, NIRC2 upgrades, the energy sensitive instrument KRAKENS, an integral field spectrograph LIGER, and a laser tomography AO upgrade. Last, we briefly discuss recovering MOSFIRE and its return to science operations

    The AIROPA software package - Milestones for testing general relativity in the strong gravity regime with AO

    Get PDF
    General relativity can be tested in the strong gravity regime by monitoring stars orbiting the supermassive black hole at the Galactic Center with adaptive optics. However, the limiting source of uncertainty is the spatial PSF variability due to atmospheric anisoplanatism and instrumental aberrations. The Galactic Center Group at UCLA has completed a project developing algorithms to predict PSF variability for Keck AO images. We have created a new software package (AIROPA), based on modified versions of StarFinder and Arroyo, that takes atmospheric turbulence profiles, instrumental aberration maps, and images as inputs and delivers improved photometry and astrometry on crowded fields. This software package will be made publicly available soon

    First-order cosmological phase transitions in the radiation dominated era

    Full text link
    We consider first-order phase transitions of the Universe in the radiation-dominated era. We argue that in general the velocity of interfaces is non-relativistic due to the interaction with the plasma and the release of latent heat. We study the general evolution of such slow phase transitions, which comprise essentially a short reheating stage and a longer phase equilibrium stage. We perform a completely analytical description of both stages. Some rough approximations are needed for the first stage, due to the non-trivial relations between the quantities that determine the variation of temperature with time. The second stage, instead, is considerably simplified by the fact that it develops at a constant temperature, close to the critical one. Indeed, in this case the equations can be solved exactly, including back-reaction on the expansion of the Universe. This treatment also applies to phase transitions mediated by impurities. We also investigate the relations between the different parameters that govern the characteristics of the phase transition and its cosmological consequences, and discuss the dependence of these parameters with the particle content of the theory.Comment: 38 pages, 3 figures; v2: Minor changes, references added; v3: several typos correcte

    Multi-host environments select for host-generalist conjugative plasmids

    Get PDF
    BACKGROUND: Conjugative plasmids play an important role in bacterial evolution by transferring ecologically important genes within and between species. A key limit on interspecific horizontal gene transfer is plasmid host range. Here, we experimentally test the effect of single and multi-host environments on the host-range evolution of a large conjugative mercury resistance plasmid, pQBR57. Specifically, pQBR57 was conjugated between strains of a single host species, either P. fluorescens or P. putida, or alternating between P. fluorescens and P. putida. Crucially, the bacterial hosts were not permitted to evolve allowing us to observe plasmid evolutionary responses in isolation. RESULTS: In all treatments plasmids evolved higher conjugation rates over time. Plasmids evolved in single-host environments adapted to their host bacterial species becoming less costly, but in the case of P. fluorescens-adapted plasmids, became costlier in P. putida, suggesting an evolutionary trade-off. When evolved in the multi-host environment plasmids adapted to P. fluorescens without a higher cost in P. putida. CONCLUSION: Whereas evolution in a single-host environment selected for host-specialist plasmids due to a fitness trade-off, this trade-off could be circumvented in the multi-host environment, leading to the evolution of host-generalist plasmids

    The hibernating mobile phone: Dead storage as a barrier to efficient electronic waste recovery

    Get PDF
    © 2016 The Authors Hibernation, the dead storage period when a mobile phone is still retained by the user at its end-of-life, is both a common and a significant barrier to the effective flow of time-sensitive stock value within a circular economic model. In this paper we present the findings of a survey of 181 mobile phone owners, aged between 18–25years old, living and studying in the UK, which explored mobile phone ownership, reasons for hibernation, and replacement motives. This paper also outlines and implements a novel mechanism for quantifying the mean hibernation period based on the survey findings. The results show that only 33.70% of previously owned mobile phones were returned back into the system. The average duration of ownership of mobile phones kept and still in hibernation was 4years 11months, with average use and hibernation durations of 1year 11months, and 3years respectively; on average, mobile phones that are kept by the user are hibernated for longer than they are ever actually used as primary devices. The results also indicate that mobile phone replacement is driven primarily by physical (technological, functional and absolute) obsolescence, with economic obsolescence, partly in response to the notion of being ‘due an upgrade’, also featuring significantly. We also identify in this paper the concept of a secondary phone, a recently replaced phone that holds a different function for the user than their primary phone but is still valued and intentionally retained by the user, and which, we conclude, should be accounted for in any reverse logistics strategy

    MALT-45: a 7 mm survey of the southern Galaxy - I. Techniques and spectral line data

    Get PDF
    We present the first results from the MALT-45 (Millimetre Astronomer's Legacy Team-45 GHz) Galactic Plane survey. We have observed 5 square degrees (l = 330°–335°, b = ±0 ∘ . 5) for spectral lines in the 7 mm band (42–44 and 48–49 GHz), including CS (1–0), class I CH3OH masers in the 7(0,7)–6(1,6) A+ transition and SiO (1–0) v = 0, 1, 2, 3. MALT-45 is the first unbiased, large-scale, sensitive spectral line survey in this frequency range. In this paper, we present data from the survey as well as a few intriguing results; rigorous analyses of these science cases are reserved for future publications. Across the survey region, we detected 77 class I CH3OH masers, of which 58 are new detections, along with many sites of thermal and maser SiO emission and thermal CS. We found that 35 class I CH3OH masers were associated with the published locations of class II CH3OH, H2O and OH masers but 42 have no known masers within 60 arcsec. We compared the MALT-45 CS with NH3 (1,1) to reveal regions of CS depletion and high opacity, as well as evolved star-forming regions with a high ratio of CS to NH3. All SiO masers are new detections, and appear to be associated with evolved stars from the Spitzer Galactic Legacy Infrared Mid-Plane Survey Extraordinaire (GLIMPSE). Generally, within SiO regions of multiple vibrational modes, the intensity decreases as v = 1, 2, 3, but there are a few exceptions where v = 2 is stronger than v = 1

    Movement Patterns for a Critically Endangered Species, the Leatherback Turtle (Dermochelys coriacea), Linked to Foraging Success and Population Status

    Get PDF
    Foraging success for pelagic vertebrates may be revealed by horizontal and vertical movement patterns. We show markedly different patterns for leatherback turtles in the North Atlantic versus Eastern Pacific, which feed on gelatinous zooplankton that are only occasionally found in high densities. In the Atlantic, travel speed was characterized by two modes, indicative of high foraging success at low speeds (<15 km d−1) and transit at high speeds (20–45 km d−1). Only a single mode was evident in the Pacific, which occurred at speeds of 21 km d−1 indicative of transit. The mean dive depth was more variable in relation to latitude but closer to the mean annual depth of the thermocline and nutricline for North Atlantic than Eastern Pacific turtles. The most parsimonious explanation for these findings is that Eastern Pacific turtles rarely achieve high foraging success. This is the first support for foraging behaviour differences between populations of this critically endangered species and suggests that longer periods searching for prey may be hindering population recovery in the Pacific while aiding population maintenance in the Atlantic

    Sulfide geochronology along the Endeavour Segment of the Juan de Fuca Ridge

    Get PDF
    Forty-nine hydrothermal sulfide-sulfate rock samples from the Endeavour Segment of the Juan de Fuca Ridge, northeastern Pacific Ocean, were dated by measuring the decay of 226Ra (half-life of 1600 years) in hydrothermal barite to provide a history of hydrothermal venting at the site over the past 6000 years. This dating method is effective for samples ranging in age from ∼200 to 20,000 years old and effectively bridges an age gap between shorter- and longer-lived U-series dating techniques for hydrothermal deposits. Results show that hydrothermal venting at the active High Rise, Sasquatch, and Main Endeavour fields began at least 850, 1450, and 2300 years ago, respectively. Barite ages of other inactive deposits on the axial valley floor are between ∼1200 and ∼2200 years old, indicating past widespread hydrothermal venting outside of the currently active vent fields. Samples from the half-graben on the eastern slope of the axial valley range in age from ∼1700 to ∼2925 years, and a single sample from outside the axial valley, near the westernmost valley fault scarp is ∼5850 ± 205 years old. The spatial relationship between hydrothermal venting and normal faulting suggests a temporal relationship, with progressive younging of sulfide deposits from the edges of the axial valley toward the center of the rift. These relationships are consistent with the inward migration of normal faulting toward the center of the valley over time and a minimum age of onset of hydrothermal activity in this region of 5850 years
    corecore