119 research outputs found

    Mechanisms and Geochemical Models of Core Formation

    Full text link
    The formation of the Earth's core is a consequence of planetary accretion and processes in the Earth's interior. The mechanical process of planetary differentiation is likely to occur in large, if not global, magma oceans created by the collisions of planetary embryos. Metal-silicate segregation in magma oceans occurs rapidly and efficiently unlike grain scale percolation according to laboratory experiments and calculations. Geochemical models of the core formation process as planetary accretion proceeds are becoming increasingly realistic. Single stage and continuous core formation models have evolved into multi-stage models that are couple to the output of dynamical models of the giant impact phase of planet formation. The models that are most successful in matching the chemical composition of the Earth's mantle, based on experimentally-derived element partition coefficients, show that the temperature and pressure of metal-silicate equilibration must increase as a function of time and mass accreted and so must the oxygen fugacity of the equilibrating material. The latter can occur if silicon partitions into the core and through the late delivery of oxidized material. Coupled dynamical accretion and multi-stage core formation models predict the evolving mantle and core compositions of all the terrestrial planets simultaneously and also place strong constraints on the bulk compositions and oxidation states of primitive bodies in the protoplanetary disk.Comment: Accepted in Fischer, R., Terasaki, H. (eds), Deep Earth: Physics and Chemistry of the Lower Mantle and Core, AGU Monograp

    A new large-volume multianvil system

    Get PDF
    Abstract A scaled-up version of the 6-8 Kwai-type multianvil apparatus has been developed at the Bayerisches Geoinstitut for operation over ranges of pressure and temperature attainable in conventional systems but with much larger sample volumes. This split-cylinder multianvil system is used with a hydraulic press that can generate loads of up to 5000 t (50 MN). The six tool-steel outer-anvils define a cubic cavity of 100 mm edge-length in which eight 54 mm tungsten carbide cubic inner-anvils are compressed. Experiments are performed using Cr 2 O 3 -doped MgO octahedra and pyrophyllite gaskets. Pressure calibrations at room temperature and high temperature have been performed with 14/8, 18/8, 18/11, 25/17 and 25/15 OEL/TEL (octahedral edge-length/anvil truncation edge-length, in millimetre) configurations. All configurations tested reach a limiting plateau where the sample-pressure no longer increases with applied load. Calibrations with different configurations show that greater sample-pressure efficiency can be achieved by increasing the OEL/TEL ratio. With the 18/8 configuration the GaP transition is reached at a load of 2500 t whereas using the 14/8 assembly this pressure cannot be reached even at substantially higher loads. With an applied load of 2000 t the 18/8 can produce MgSiO 3 perovskite at 1900 • C with a sample volume of ∼20 mm 3 , compared with <3 mm 3 in conventional multianvil systems at the same conditions. The large octahedron size and use of a stepped LaCrO 3 heater also results in significantly lower thermal gradients over the sample

    Particle identification studies with a full-size 4-GEM prototype for the ALICE TPC upgrade

    Full text link
    A large Time Projection Chamber is the main device for tracking and charged-particle identification in the ALICE experiment at the CERN LHC. After the second long shutdown in 2019/20, the LHC will deliver Pb beams colliding at an interaction rate of about 50 kHz, which is about a factor of 50 above the present readout rate of the TPC. This will result in a significant improvement on the sensitivity to rare probes that are considered key observables to characterize the QCD matter created in such collisions. In order to make full use of this luminosity, the currently used gated Multi-Wire Proportional Chambers will be replaced. The upgrade relies on continuously operated readout detectors employing Gas Electron Multiplier technology to retain the performance in terms of particle identification via the measurement of the specific energy loss by ionization dEE/dxx. A full-size readout chamber prototype was assembled in 2014 featuring a stack of four GEM foils as an amplification stage. The performance of the prototype was evaluated in a test beam campaign at the CERN PS. The dEE/dxx resolution complies with both the performance of the currently operated MWPC-based readout chambers and the challenging requirements of the ALICE TPC upgrade program. Detailed simulations of the readout system are able to reproduce the data.Comment: Submitted to NIM

    The upgrade of the ALICE TPC with GEMs and continuous readout

    Get PDF
    The upgrade of the ALICE TPC will allow the experiment to cope with the high interaction rates foreseen for the forthcoming Run 3 and Run 4 at the CERN LHC. In this article, we describe the design of new readout chambers and front-end electronics, which are driven by the goals of the experiment. Gas Electron Multiplier (GEM) detectors arranged in stacks containing four GEMs each, and continuous readout electronics based on the SAMPA chip, an ALICE development, are replacing the previous elements. The construction of these new elements, together with their associated quality control procedures, is explained in detail. Finally, the readout chamber and front-end electronics cards replacement, together with the commissioning of the detector prior to installation in the experimental cavern, are presented. After a nine-year period of R&D, construction, and assembly, the upgrade of the TPC was completed in 2020.publishedVersio

    iSpectra: An Open Source Toolbox For The Analysis of Spectral Images Recorded on Scanning Electron Microscopes

    No full text
    iSpectra is an open source and system-independent toolbox for the analysis of spectral images (SIs) recorded on energy-dispersive spectroscopy (EDS) systems attached to scanning electron microscopes (SEMs). The aim of iSpectra is to assign pixels with similar spectral content to phases, accompanied by cumulative phase spectra with superior counting statistics for quantification. Pixel-to-phase assignment starts with a threshold-based pre-sorting of spectra to create groups of pixels with identical elemental budgets, similar to a method described by van Hoek (2014). Subsequent merging of groups and re-assignments of pixels using elemental or principle component histogram plots enables the user to generate chemically and texturally plausible phase maps. A variety of standard image processing algorithms can be applied to groups of pixels to optimize pixel-to-phase assignments, such as morphology operations to account for overlapping excitation volumes over pixels located at phase boundaries. iSpectra supports batch processing and allows pixel-to-phase assignments to be applied to an unlimited amount of SIs, thus enabling phase mapping of large area samples like petrographic thin section

    iSpectra: an Open Source Tool Box for the Analysis of Spectral Images Recorded on Scanning Electron Microscopes

    No full text
    ISSN:1431-9276ISSN:1435-811
    corecore